ROBUST FUNCTIONAL PRINCIPAL COMPONENTS: A PROJECTION-PURSUIT APPROACH

被引:64
|
作者
Lucas Bali, Juan [1 ]
Boente, Graciela [1 ]
Tyler, David E. [3 ]
Wang, Jane-Ling [2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Rutgers State Univ, Dept Stat, Hill Ctr, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Fisher-consistency; functional data; method of sieves; penalization; principal component analysis; outliers; robust estimation; DISTRIBUTIONS; ESTIMATORS; MATRICES; SCALE;
D O I
10.1214/11-AOS923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many situations, data are recorded over a period of time and may be regarded as realizations of a stochastic process. In this paper, robust estimators for the principal components are considered by adapting the projection pursuit approach to the functional data setting. Our approach combines robust projection-pursuit with different smoothing methods. Consistency of the estimators are shown under mild assumptions. The performance of the classical and robust procedures are compared in a simulation study under different contamination schemes.
引用
收藏
页码:2852 / 2882
页数:31
相关论文
共 50 条
  • [11] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [12] A robust approach to common principal components
    Boente, G
    Orellana, L
    STATISTICS IN GENETICS AND IN THE ENVIRONMENTAL SCIENCES, 2001, : 117 - 145
  • [13] Robust functional regression based on principal components
    Kalogridis, Ioannis
    Van Aelst, Stefan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 393 - 415
  • [14] Consistency of a numerical approximation to the first principal component projection pursuit estimator
    Lucas Bali, Juan
    Boente, Graciela
    STATISTICS & PROBABILITY LETTERS, 2014, 94 : 181 - 191
  • [16] Robust functional principal components for sparse longitudinal data
    Graciela Boente
    Matías Salibián-Barrera
    METRON, 2021, 79 : 159 - 188
  • [17] Functional outlier detection with robust functional principal component analysis
    Pallavi Sawant
    Nedret Billor
    Hyejin Shin
    Computational Statistics, 2012, 27 : 83 - 102
  • [18] Functional outlier detection with robust functional principal component analysis
    Sawant, Pallavi
    Billor, Nedret
    Shin, Hyejin
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 83 - 102
  • [19] Functional projection pursuit regression
    Ferraty, F.
    Goia, A.
    Salinelli, E.
    Vieu, P.
    TEST, 2013, 22 (02) : 293 - 320
  • [20] Robust functional principal components for irregularly spaced longitudinal data
    Maronna, Ricardo A.
    STATISTICAL PAPERS, 2021, 62 (04) : 1563 - 1582