Declarative Probabilistic Programming with Datalog

被引:20
作者
Barany, Vince [1 ,4 ]
Ten Cate, Balder [1 ,4 ]
Kimelfeld, Benny [2 ]
Olteanu, Dan [3 ]
Vagena, Zografoula [1 ,5 ]
机构
[1] LogicBlox Inc, Atlanta, GA 30309 USA
[2] Technion Israel Inst Technol, Fac Comp Sci, Taub 703, IL-32000 Haifa, Israel
[3] Univ Oxford, Wolfson Bldg,Pk Rd, Oxford OX1 3QD, England
[4] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[5] Infor Inc, 1349 West Peachtree St, Atlanta, GA 30309 USA
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2017年 / 42卷 / 04期
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
Chase; Datalog; declarative; probability measure space; probabilistic programming; LOGIC; INFERENCE; NETWORKS; LANGUAGE; QUERIES;
D O I
10.1145/3132700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic programming languages are used for developing statistical models. They typically consist of two components: a specification of a stochastic process (the prior) and a specification of observations that restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include the development of algorithms in machine learning and artificial intelligence. In this article, we establish a probabilistic-programming extension of Datalog that, on the one hand, allows for defining a rich family of statistical models, and on the other hand retains the fundamental properties of declarativity. Our proposed extension provides mechanisms to include common numerical probability functions; in particular, conclusions of rules may contain values drawn from such functions. The semantics of a program is a probability distribution over the possible outcomes of the input database with respect to the program. Observations are naturally incorporated by means of integrity constraints over the extensional and intensional relations. The resulting semantics is robust under different chases and invariant to rewritings that preserve logical equivalence.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] On the algebraic structure of declarative programming languages
    Amato, Gianluca
    Lipton, James
    McGrail, Robert
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (46) : 4626 - 4671
  • [22] Declarative Programming for Artificial Intelligence Applications
    Lloyd, John W.
    ICFP'07 PROCEEDINGS OF THE 2007 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2007, : 123 - 124
  • [23] Declarative Learning-Based Programming as an Interface to AI Systems
    Kordjamshidi, Parisa
    Roth, Dan
    Kersting, Kristian
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [24] Declarative programming for artificial intelligence applications
    Lloyd, John W.
    ACM SIGPLAN NOTICES, 2007, 42 (09) : 123 - 124
  • [25] Query answering under probabilistic uncertainty in Datalog plus / - ontologies
    Gottlob, Georg
    Lukasiewicz, Thomas
    Martinez, Maria Vanina
    Simari, Gerardo I.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2013, 69 (01) : 37 - 72
  • [26] Declarative Programming with Intensional Sets in Java']Java Using JS']JSetL
    Cristia, Maximiliano
    Fois, Andrea
    Rossi, Gianfranco
    COMPUTER JOURNAL, 2023, 66 (03) : 763 - 784
  • [27] Probabilistic programming: A review for environmental modellers
    Krapu, Christopher
    Borsuk, Mark
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 114 : 40 - 48
  • [28] Datalog Unchained
    Vianu, Victor
    PODS '21: PROCEEDINGS OF THE 40TH SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2021, : 57 - 69
  • [29] Conditioning in Probabilistic Programming
    Benjamin, Nils Jansen
    Kaminski, Lucien
    Katoen, Joost-Pieter
    Olmedo, Federico
    Gretz, Friedrich
    McIver, Annabelle
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2015, 319 : 199 - 216
  • [30] Reactive Probabilistic Programming
    Baudart, Guillaume
    Mandel, Louis
    Atkinson, Eric
    Sherman, Benjamin
    Pouzet, Marc
    Carbin, Michael
    PROCEEDINGS OF THE 41ST ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '20), 2020, : 898 - 912