Declarative Probabilistic Programming with Datalog

被引:20
|
作者
Barany, Vince [1 ,4 ]
Ten Cate, Balder [1 ,4 ]
Kimelfeld, Benny [2 ]
Olteanu, Dan [3 ]
Vagena, Zografoula [1 ,5 ]
机构
[1] LogicBlox Inc, Atlanta, GA 30309 USA
[2] Technion Israel Inst Technol, Fac Comp Sci, Taub 703, IL-32000 Haifa, Israel
[3] Univ Oxford, Wolfson Bldg,Pk Rd, Oxford OX1 3QD, England
[4] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[5] Infor Inc, 1349 West Peachtree St, Atlanta, GA 30309 USA
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2017年 / 42卷 / 04期
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
Chase; Datalog; declarative; probability measure space; probabilistic programming; LOGIC; INFERENCE; NETWORKS; LANGUAGE; QUERIES;
D O I
10.1145/3132700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic programming languages are used for developing statistical models. They typically consist of two components: a specification of a stochastic process (the prior) and a specification of observations that restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include the development of algorithms in machine learning and artificial intelligence. In this article, we establish a probabilistic-programming extension of Datalog that, on the one hand, allows for defining a rich family of statistical models, and on the other hand retains the fundamental properties of declarativity. Our proposed extension provides mechanisms to include common numerical probability functions; in particular, conclusions of rules may contain values drawn from such functions. The semantics of a program is a probability distribution over the possible outcomes of the input database with respect to the program. Observations are naturally incorporated by means of integrity constraints over the extensional and intensional relations. The resulting semantics is robust under different chases and invariant to rewritings that preserve logical equivalence.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Declarative probabilistic logic programming in discrete-continuous domains
    Dos Martires, Pedro Zuidberg
    De Raedt, Luc
    Kimmig, Angelika
    ARTIFICIAL INTELLIGENCE, 2024, 337
  • [2] Generative Datalog and Answer Set Programming - Extended Abstract
    Alviano, Mario
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2023, 2023, 14281 : 3 - 10
  • [3] A Functional Account of Probabilistic Programming with Possible Worlds Declarative Pearl
    van den Berg, Birthe
    Schrijvers, Tom
    FUNCTIONAL AND LOGIC PROGRAMMING, FLOPS 2022, 2022, 13215 : 186 - 204
  • [4] A declarative extension of horn clauses, and its significance for datalog and its applications
    Mazuran, Mirjana
    Serra, Edoardo
    Zaniolo, Carlo
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2013, 13 : 609 - 623
  • [5] Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference
    Tehrani, Nazanin
    Arora, Nimar S.
    Li, Yucen Lily
    Shah, Kinjal Divesh
    Noursi, David
    Tingley, Michael
    Torabi, Narjes
    Masouleh, Sepehr
    Lippert, Eric
    Meijer, Erik
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 485 - 496
  • [6] Probabilistic (logic) programming concepts
    De Raedt, Luc
    Kimmig, Angelika
    MACHINE LEARNING, 2015, 100 (01) : 5 - 47
  • [7] Exact Recursive Probabilistic Programming
    Chiang, David
    McDonald, Colin
    Shan, Chung-chieh
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (OOPSLA):
  • [8] From Datalog to FLIX: A Declarative Language for Fixed Points on Lattices
    Madsen, Magnus
    Yee, Ming-Ho
    Lhotak, Ondrej
    ACM SIGPLAN NOTICES, 2016, 51 (06) : 194 - 208
  • [9] The Joy of Probabilistic Answer Set Programming
    Cozman, Fabio Gagliardi
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 91 - 101
  • [10] Formal semantics and high performance in declarative machine learning using Datalog
    Jin Wang
    Jiacheng Wu
    Mingda Li
    Jiaqi Gu
    Ariyam Das
    Carlo Zaniolo
    The VLDB Journal, 2021, 30 : 859 - 881