Control of chaotic oscillators via a class of model free active controller:: Suppresion and synchronization

被引:8
作者
Aguilar-Lopez, Ricardo [1 ]
Martinez-Guerra, Rafael [2 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Mexico City 02200, DF, Mexico
[2] IPN, Dept Automat Control, CINVESTAV, Mexico City 07360, DF, Mexico
关键词
D O I
10.1016/j.chaos.2006.11.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 20 条
[11]   Chaos control and synchronization of a Φ6-Van der Pol oscillator [J].
Kakmeni, FMM ;
Bowong, S ;
Tchawoua, C ;
Kaptouom, E .
PHYSICS LETTERS A, 2004, 322 (5-6) :305-323
[12]  
KHOSKOUEI AJ, 2005, IEE P-CONTR THEOR AP, V152, P392
[13]   Synchronization of two chaotic nonlinear gyros using active control [J].
Lei, YM ;
Xu, W ;
Zheng, HC .
PHYSICS LETTERS A, 2005, 343 (1-3) :153-158
[14]   Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence [J].
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (09) :1447-1451
[15]   Observer based synchronization of chaotic systems [J].
Morgul, O ;
Solak, E .
PHYSICAL REVIEW E, 1996, 54 (05) :4803-4811
[16]   Mini-max integral sliding-mode control for multimodel linear uncertain systems [J].
Poznyak, A ;
Fridman, L ;
Bejarano, FJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (01) :97-102
[17]   Observer-based control of a class of chaotic systems [J].
Solak, E ;
Morgül, O ;
Ersoy, U .
PHYSICS LETTERS A, 2001, 279 (1-2) :47-55
[18]   Synchronization of Rikitake chaotic attractor using active control [J].
Vincent, UE .
PHYSICS LETTERS A, 2005, 343 (1-3) :133-138
[19]   Adaptive synchronization between two different chaotic systems with unknown parameters [J].
Zhang, HG ;
Huang, W ;
Wang, ZL ;
Chai, TY .
PHYSICS LETTERS A, 2006, 350 (5-6) :363-366
[20]  
[No title captured]