Control of chaotic oscillators via a class of model free active controller:: Suppresion and synchronization

被引:8
作者
Aguilar-Lopez, Ricardo [1 ]
Martinez-Guerra, Rafael [2 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Mexico City 02200, DF, Mexico
[2] IPN, Dept Automat Control, CINVESTAV, Mexico City 07360, DF, Mexico
关键词
D O I
10.1016/j.chaos.2006.11.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 20 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
AGUILARLOPEZ R, CHAOS SOLIT IN PRESS
[3]   Sliding-mode adaptive observer approach to chaotic synchronization [J].
Azemi, A ;
Yaz, EE .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (04) :758-765
[4]   Successful bounded control for a chemical reactor with non-linear oscillatory consecutive reactions [J].
Barron, MA ;
Gonzalez, J ;
Aguilar, R ;
ArceMedina, E .
CHEMICAL ENGINEERING JOURNAL, 1997, 66 (01) :27-33
[5]   Chattering elimination with second-order sliding modes robust to coulomb friction [J].
Bartolini, G ;
Punta, E .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (04) :679-686
[6]   ADAPTIVE-CONTROL OF CHAOS [J].
BOCCALETTI, S ;
ARECCHI, FT .
EUROPHYSICS LETTERS, 1995, 31 (03) :127-132
[7]   Stability and duration time of chaos synchronization of a class of nonidentical oscillators [J].
Bowong, S ;
Kakmeni, FMM .
PHYSICA SCRIPTA, 2003, 68 (04) :326-332
[8]   Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification [J].
Chen, SH ;
Hu, J ;
Wang, CP ;
Lü, JH .
PHYSICS LETTERS A, 2004, 321 (01) :50-55
[9]   An extension to chaos control via Lie derivatives: Fully linearizable systems [J].
Femat, R .
CHAOS, 2002, 12 (04) :1027-1033
[10]   Phase and anti-phase synchronization of two chaotic systems by using active control [J].
Ho, MC ;
Hung, YC ;
Chou, CH .
PHYSICS LETTERS A, 2002, 296 (01) :43-48