Using increment of diversity to predict mitochondrial proteins of malaria parasite: integrating pseudo-amino acid composition and structural alphabet
被引:27
作者:
Chen, Ying-Li
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
Virginia Tech, Dept Comp Sci, Blacksburg, VA USAInner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
Chen, Ying-Li
[1
,2
]
Li, Qian-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R ChinaInner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
Li, Qian-Zhong
[1
]
Zhang, Li-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
Virginia Tech, Dept Comp Sci, Blacksburg, VA USA
Virginia Tech, Program Genet Bioinformat & Computat Biol, Blacksburg, VA USAInner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
Zhang, Li-Qing
[1
,2
,3
]
机构:
[1] Inner Mongolia Univ, Sch Phys Sci & Technol, Lab Theoret Biophys, Hohhot, Peoples R China
[2] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA
[3] Virginia Tech, Program Genet Bioinformat & Computat Biol, Blacksburg, VA USA
Due to the complexity of Plasmodium falciparum (PF) genome, predicting mitochondrial proteins of PF is more difficult than other species. In this study, using the n-peptide composition of reduced amino acid alphabet (RAAA) obtained from structural alphabet named Protein Blocks as feature parameter, the increment of diversity (ID) is firstly developed to predict mitochondrial proteins. By choosing the 1-peptide compositions on the N-terminal regions with 20 residues as the only input vector, the prediction performance achieves 86.86% accuracy with 0.69 Mathew's correlation coefficient (MCC) by the jackknife test. Moreover, by combining with the hydropathy distribution along protein sequence and several reduced amino acid alphabets, we achieved maximum MCC 0.82 with accuracy 92% in the jackknife test by using the developed ID model. When evaluating on an independent dataset our method performs better than existing methods. The results indicate that the ID is a simple and efficient prediction method for mitochondrial proteins of malaria parasite.
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Liu, Taigang
Zheng, Xiaoqi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Zheng, Xiaoqi
Wang, Chunhua
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Ocean Univ, Coll Informat Technol, Shanghai 201306, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Wang, Chunhua
Wang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
机构:
Jing De Zhen Ceram Inst, Dept Comp, Jing De Zhen 333403, Peoples R China
Gordon Life Sci Inst, San Diego, CA 92130 USAJing De Zhen Ceram Inst, Dept Comp, Jing De Zhen 333403, Peoples R China
Xiao, Xuan
Chou, Kuo-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Gordon Life Sci Inst, San Diego, CA 92130 USAJing De Zhen Ceram Inst, Dept Comp, Jing De Zhen 333403, Peoples R China
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
Huang, Qiao-Ying
You, Zhu-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
You, Zhu-Hong
Li, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
Li, Shuai
Zhu, Zexuan
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
Zhu, Zexuan
PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN),
2014,
: 2952
-
2956
机构:
Hebei United Univ, Sch Publ Hlth, Tangshan 063000, Peoples R ChinaHebei United Univ, Sch Publ Hlth, Tangshan 063000, Peoples R China
Feng, Peng-Mian
Chen, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Hebei United Univ, Sch Sci, Dept Phys, Tangshan 063000, Peoples R China
Hebei United Univ, Ctr Genom & Computat Biol, Tangshan 063000, Peoples R China
Gordon Life Sci Inst, Belmont, MA 02478 USAHebei United Univ, Sch Publ Hlth, Tangshan 063000, Peoples R China
Chen, Wei
Lin, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Life Sci & Technol, Ctr Bioinformat, Key Lab Neuroinformat,Minist Educ, Chengdu 610054, Peoples R ChinaHebei United Univ, Sch Publ Hlth, Tangshan 063000, Peoples R China
Lin, Hao
Chou, Kuo-Chen
论文数: 0引用数: 0
h-index: 0
机构:
Gordon Life Sci Inst, Belmont, MA 02478 USA
King Abdulaziz Univ, CEGMR, Jeddah 21413, Saudi ArabiaHebei United Univ, Sch Publ Hlth, Tangshan 063000, Peoples R China