Topology and curvature of properly embedded minimal surfaces in 3-space

被引:50
作者
Collin, P [1 ]
机构
[1] ECOLE NORMALE SUPER LYON, F-69364 LYON, FRANCE
关键词
D O I
10.2307/2951822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 31
页数:31
相关论文
共 19 条
[1]  
[Anonymous], 1989, J AMS, DOI DOI 10.1090/S0894-0347-1989-1002088-X
[2]   THE STRUCTURE OF SINGLY-PERIODIC MINIMAL-SURFACES [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :455-481
[3]   DIRICHLET PROBLEM FOR MINIMAL SURFACE EQUATION ON UNBOUNDED-DOMAINS [J].
COLLIN, P ;
KRUST, R .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (04) :443-462
[4]   CLASSIFICATION OF COMPLETE MINIMAL-SURFACES IN R3 WITH TOTAL CURVATURE 12-PI [J].
COSTA, CJ .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :273-303
[5]  
EARP RS, 1989, J MATH PURE APPL, V68, P163
[6]   SOME GLOBAL PROPERTIES OF COMPLETE MINIMAL-SURFACES OF FINITE TOPOLOGY IN R3 [J].
FANG, Y ;
MEEKS, WH .
TOPOLOGY, 1991, 30 (01) :9-20
[7]   Total curvature of branched minimal surfaces [J].
Fang, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1895-1898
[8]  
Huber A., 1957, COMMENT MATH HELV, V32, P13, DOI [DOI 10.1007/BF02564570.571, 10.1007/BF02564570]
[9]  
JENKINS H, 1966, ARCH RATION MECH AN, V21, P321
[10]   THE TOPOLOGY OF COMPLETE MINIMAL-SURFACES OF FINITE TOTAL GAUSSIAN CURVATURE [J].
JORGE, LP ;
MEEKS, WH .
TOPOLOGY, 1983, 22 (02) :203-221