Optimizing Platinum Location on Nickel Hydroxide Nanosheets to Accelerate the Hydrogen Evolution Reaction

被引:28
作者
Liu, Qianfeng [1 ,2 ]
Yan, Zhao [1 ]
Gao, Jianxin [1 ,3 ]
Wang, Erdong [1 ]
Sun, Gongquan [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Dalian Univ Technol, State Key Lab Fine Chem, Sch Chem Engn, Dalian 116024, Peoples R China
关键词
platinum; nickel hydroxide; hydrogen evolution reaction; electrocatalysis; water electrolysis; LAYERED DOUBLE HYDROXIDES; HIGHLY EFFICIENT; HYBRID NANOARRAY; ELECTROCATALYSTS; PERFORMANCE; NI(OH)(2); CATALYST; FOAM; REDUCTION; SURFACE;
D O I
10.1021/acsami.0c00534
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rational electrode design is crucial to promote the performance of the hydrogen evolution reaction (HER) via further enhancing the activity, stability, and utilization of platinum (Pt) in an alkaline electrolyte. Herein, a binder-free low-Pt-content HER electrode, Pt (similar to 20 mu g cm(-2)) decorated on nickel hydroxide grown on nickel foam (Pt-Ni(OH)(2)-2h-NF20), is fabricated at near room temperature in a test tube. To lower the ohmic resistance, for the first time, the Pt nanoparticles were location-selectively anchored on the bottom of height-controlled vertical Ni(OH)(2) nanosheets via utilizing the mass transfer resistance of the dense Ni(OH)(2) film for chloroplatinate. Furthermore, the excellent mass transfer, high specific surface area of Pt, synergistic effect between Pt with Ni(OH)(2), and stable structure together prompt the resulting electrode with a special structure to exhibit superior HER electrocatalytic activity and stability in 1 M KOH. Typically, this electrode reaches a current density of 35.9 mA cm(-2) at an overpotential of 100 mV, which is over 8 times higher than that of commercial Pt/C, and the overpotential only increases by 20 mV at 100 mA cm(-2) over 150,000 s of stability test. Benefiting from the simple fabrication process, the electrode with an area of 840 cm(2) was successfully prepared with a steady overpotential of 370 mV at 1000 mA cm(-2) and increased potential of 23 mV over 50 h of stability test.
引用
收藏
页码:24683 / 24692
页数:10
相关论文
共 56 条
[1]   Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Venkatesh, Murugadoss ;
Simha, Tangella V. S. V. ;
Salunke, Ashish S. ;
Ma, Lian ;
Liang, Hong ;
Kundu, Subrata .
NANO ENERGY, 2017, 39 :30-43
[2]   Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites [J].
Chen, Guangbo ;
Wang, Tao ;
Zhang, Jian ;
Liu, Pan ;
Sun, Hanjun ;
Zhuang, Xiaodong ;
Chen, Mingwei ;
Feng, Xinliang .
ADVANCED MATERIALS, 2018, 30 (10)
[3]   A Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media [J].
Chen, Lanlan ;
Zhang, Jiayu ;
Ren, Xiang ;
Ge, Ruixiang ;
Teng, Wanqing ;
Sun, Xuping ;
Li, Xuemei .
NANOSCALE, 2017, 9 (43) :16632-16637
[4]   Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting [J].
Chen, Qian-Qian ;
Hou, Chun-Chao ;
Wang, Chuan-Jun ;
Yang, Xiao ;
Shi, Rui ;
Chen, Yong .
CHEMICAL COMMUNICATIONS, 2018, 54 (49) :6400-6403
[5]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[6]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498
[7]   Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting [J].
Du, Xiaoqiang ;
Yang, Zhi ;
Li, Yu ;
Gong, Yaqiong ;
Zhao, Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (16) :6938-6946
[8]   Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts [J].
Feng, Jin-Xian ;
Tong, Si-Yao ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (15) :5118-5126
[9]   Co(OH)2@PANI Hybrid Nanosheets with 3D Networks as High-Performance Electrocatalysts for Hydrogen Evolution Reaction [J].
Feng, Jin-Xian ;
Ding, Liang-Xin ;
Ye, Sheng-Hua ;
He, Xu-Jun ;
Xu, Han ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ADVANCED MATERIALS, 2015, 27 (44) :7051-+
[10]   Just a Dream-or Future Reality? [J].
Gasteiger, Hubert A. ;
Markovic, Nenad M. .
SCIENCE, 2009, 324 (5923) :48-49