Robust MPC Design Using Orthonormal Basis Function for the Processes with ARMAX Model

被引:0
作者
HosseinNia, S. Hassan [1 ]
Lundh, Michael [1 ]
机构
[1] ABB AB, Corp Res, Vasteras, Sweden
来源
2014 IEEE EMERGING TECHNOLOGY AND FACTORY AUTOMATION (ETFA) | 2014年
关键词
Model predictive control; ARMAX model; MPC Tuning; Orthonormal basis function; Laguerre network; GENERALIZED PREDICTIVE CONTROL; SYSTEMS; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Applying MPC in the case of rapid sampling, complicated process dynamics lead us to poorly numerically conditioned solutions and heavy computational load. Furthermore, there is always mismatch in a model that describes a real process. Therefore, in this paper in order to prevail over the mentioned difficulties, we design a MPC using Laguerre orthonormal basis functions based on ARMAX models. More precisely, the Laguerre function speed up the convergence at the same time with lower computation and ARMAX model guarantee's the offset free control adding the extra parameters "a" and "gamma" to MPC. The extra parameters as well as MPC parameters will be tuned in order to guarantee the robustness of the system against the model mismatch and measurement noise. Hence, in this novel MPC design the extra tuning parameters render a better closed loop performance since it explicitly balances the speed of convergence for the disturbance state and the sensitivity to noise in this estimate. The performance of the controller is examined controlling level of a Tank and Wood-Berry distillation column.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A GENERAL ROBUST MPC DESIGN FOR THE STATE-SPACE MODEL: APPLICATION TO PAPER MACHINE PROCESS
    HosseinNia, S. Hassan
    Lundh, Michael
    ASIAN JOURNAL OF CONTROL, 2016, 18 (05) : 1891 - 1907
  • [2] Adaptive Control Using the Fuzzy Basis Function with Robust Design
    Hu, Nien-Tsu
    Wu, Ter-Feng
    Tsai, Pu-Sheng
    Chen, Jen-Yang
    2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 966 - 969
  • [3] LMI approach for robust predictive control using orthonormal basis functions
    Araujo, Humberto X.
    de Araujo, Rafael R.
    Oliveira, Gustavo H. C.
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2015, 24 (03) : 244 - 256
  • [4] An Experimental Evaluation of an Adaptive MPC Scheme based on Output Error Models Parameterized using Orthonormal Basis Filters
    Patil, Prashant V.
    Choudhary, Rahul
    Patel, Nitinkumar
    Patwardhan, Sachin C.
    IFAC PAPERSONLINE, 2016, 49 (01): : 664 - 669
  • [5] An LMI Approach for Output Feedback Robust Predictive Control using Orthonormal Basis Functions
    Araujo, Humberto X.
    Oliveira, Gustavo H. C.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3987 - 3992
  • [6] ROBUST MPC CONTROLLER DESIGN FOR SWITCHED SYSTEMS USING MULTI-PARAMETER DEPENDENT LYAPUNOV FUNCTION
    Vesely, Vojtech
    Rosinova, Danica
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (01): : 269 - 280
  • [7] Magnetic Anomaly Detection Using Full Magnetic Gradient Orthonormal Basis Function
    Qin, Yijie
    Li, Keyan
    Yao, Chang
    Wang, Xianran
    Ouyang, Jun
    Yang, Xiaofei
    IEEE SENSORS JOURNAL, 2020, 20 (21) : 12928 - 12940
  • [8] Robust MPC design for multi-model infinite-dimensional distributed parameter systems
    Zhang, Lu
    Xie, Junyao
    Koch, Charles Robert
    Dubljevic, Stevan
    JOURNAL OF PROCESS CONTROL, 2024, 143
  • [9] Fractional order MPC design using improved state space model
    Zou, Qin
    Zhang, Junfeng
    Zhang, Ridong
    Gao, Furong
    Xue, Anke
    IFAC PAPERSONLINE, 2017, 50 (01): : 7535 - 7540
  • [10] Robust model predictive control design using a generalized objective function
    Wang, D
    Romagnoli, JA
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (07) : 965 - 982