A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data

被引:28
作者
Chandru, M. [1 ]
Prabha, T. [1 ]
Shanthi, V. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Tiruchirappalli, Tamil Nadu, India
关键词
Singular Perturbation Problem (SPP); Boundary and interior layers; Reaction-convection-diffusion; Two-parameter; Hybrid difference scheme; CONVECTION-DIFFUSION PROBLEMS; BOUNDARY;
D O I
10.1016/j.cam.2016.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed second order ordinary differential equation having two parameters with a discontinuous source term is presented for numerical analysis. Theoretical bounds on the derivatives, regular and singular components of the solution are derived. A hybrid monotone difference scheme with the method of averaging at the discontinuous point is constructed on Shishkin mesh. Parameter-uniform error bounds for the numerical approximation are established. Numerical results are presented which support the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 27
页数:17
相关论文
共 23 条
[1]  
BIGGE J, 1985, MATH COMPUT, V45, P393, DOI 10.1090/S0025-5718-1985-0804931-X
[2]   A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient [J].
Cen, ZD .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) :689-699
[3]  
Chandru M., 2014, INT J APPL COMPUT MA, V1, P87
[4]  
Chandru M., 2015, INT J APPL COMPUT MA, V1, P491, DOI DOI 10.1007/S40819-015-0030-1
[5]   ASYMPTOTIC SOLUTION OF A 2-PARAMETER BOUNDARY-VALUE PROBLEM OF CHEMICAL REACTOR THEORY [J].
CHEN, J ;
OMALLEY, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (04) :717-729
[6]   Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters [J].
Das, Pratibhamoy ;
Mehrmann, Volker .
BIT NUMERICAL MATHEMATICS, 2016, 56 (01) :51-76
[7]   Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems [J].
Das, Pratibhamoy ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :265-277
[8]  
de Falco C, 2010, INT J NUMER ANAL MOD, V7, P444
[9]   ASYMPTOTIC METHODS FOR AN INFINITELY LONG SLIDER SQUEEZE-FILM BEARING [J].
DIPRIMA, RC .
JOURNAL OF LUBRICATION TECHNOLOGY, 1968, 90 (01) :173-&
[10]  
Doolan EP., 1980, UNIFORM NUMERICAL ME