Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels

被引:104
作者
Gao, Guhui [1 ]
Liu, Rong [1 ]
Wang, Kun [1 ]
Gui, Xiaolu [1 ]
Misra, R. D. K. [2 ]
Bai, Bingzhe [1 ,3 ]
机构
[1] Beijing Jiaotong Univ, Mat Sci & Engn Res Ctr, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] Univ Texas El Paso, Dept Met Mat & Biomed Engn, Lab Excellence Adv Steel Res, 500 W Univ Ave, El Paso, TX 79968 USA
[3] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Bainitic steel; High cycle fatigue; Retained austenite; Fatigue crack initiation; Small crack; HIGH-CYCLE FATIGUE; STRENGTH; MICROSTRUCTURE; BEHAVIOR; TRANSFORMATION; MECHANISMS; TOUGHNESS; GROWTH;
D O I
10.1016/j.scriptamat.2020.03.036
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We describe here the distinct high cycle fatigue properties of advanced bainitic steels to elucidate the significant role of retained austenite with different morphologies on sub-surface fatigue crack initiation process. The inter-plate film-like retained austenite at the straight front of small crack tip transformed to martensite, leading to the arrest of small crack growth and altered the active slip systems. However, the blocky retained austenite or martensite/austenite islands located at prior austenite grain boundaries induced intergranular fatigue cracking because of ease of activation of slip in retained austenite. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 26 条
[11]   Investigations of fatigue damage in tempered martensitic steel in the HCF regime [J].
Koschella, Kevin ;
Krupp, Ulrich .
INTERNATIONAL JOURNAL OF FATIGUE, 2019, 124 :113-122
[12]   Microstructural effects on the sub-critical fatigue crack growth in nano-bainite [J].
Kumar, Avanish ;
Singh, Aparna .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 743 :464-471
[13]   Carbon partitioning during bainite transformation in low alloy steels [J].
Lawrynowicz, Z .
MATERIALS SCIENCE AND TECHNOLOGY, 2002, 18 (11) :1322-1324
[14]   Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel [J].
Marinelli, M. C. ;
Alvarez-Armas, I. ;
Krupp, U. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 684 :254-260
[15]  
MILLER KJ, 1993, MATER SCI TECH SER, V9, P453, DOI 10.1179/026708393790172178
[16]   The limits of strength and toughness in steel [J].
Morris, JW ;
Guo, Z ;
Krenn, CR ;
Kim, YH .
ISIJ INTERNATIONAL, 2001, 41 (06) :599-611
[17]   Multiple mechanisms of lath martensite plasticity [J].
Morsdorf, L. ;
Jeannin, O. ;
Barbier, D. ;
Mitsuhara, M. ;
Raabe, D. ;
Tasan, C. C. .
ACTA MATERIALIA, 2016, 121 :202-214
[18]   COARSE SLIP MODEL OF FATIGUE [J].
NEUMANN, P .
ACTA METALLURGICA, 1969, 17 (09) :1219-&
[19]   On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels [J].
Rementeria, Rosalia ;
Morales-Rivas, Lucia ;
Kuntz, Matthias ;
Garcia-Mateo, Carlos ;
Kerscher, Eberhard ;
Sourmail, Thomas ;
Caballero, Francisca G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 630 :71-77
[20]   Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J].
Sakai, T. ;
Oguma, N. ;
Morikawa, A. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2015, 38 (11) :1305-1314