Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation

被引:95
作者
Dorent, Reuben [1 ]
Joutard, Samuel [1 ]
Modat, Marc [1 ]
Ourselin, Sebastien [1 ]
Vercauteren, Tom [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-32245-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new deep learning method for tumour segmentation when dealing with missing imaging modalities. Instead of producing one network for each possible subset of observed modalities or using arithmetic operations to combine feature maps, our hetero-modal variational 3D encoder-decoder independently embeds all observed modalities into a shared latent representation. Missing data and tumour segmentation can be then generated from this embedding. In our scenario, the input is a random subset of modalities. We demonstrate that the optimisation problem can be seen as a mixture sampling. In addition to this, we introduce a new network architecture building upon both the 3D U-Net and the Multi-Modal Variational Auto-Encoder (MVAE). Finally, we evaluate our method on BraTS2018 using subsets of the imaging modalities as input. Our model outperforms the current state-of-the-art method for dealing with missing modalities and achieves similar performance to the subset-specific equivalent networks.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2018, P 32 INT C NEUR INF
[2]  
[Anonymous], 2014, ICLR
[3]  
Cao Y., 2014, ARXIV14107827 CORR
[4]   NiftyNet: a deep-learning platform for medical imaging [J].
Gibson, Eli ;
Li, Wenqi ;
Sudre, Carole ;
Fidon, Lucas ;
Shakir, Dzhoshkun I. ;
Wang, Guotai ;
Eaton-Rosen, Zach ;
Gray, Robert ;
Doel, Tom ;
Hu, Yipeng ;
Whyntie, Tom ;
Nachev, Parashkev ;
Modat, Marc ;
Barratt, Dean C. ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Vercauteren, Tom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :113-122
[5]  
Havaei Mohammad, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P469, DOI 10.1007/978-3-319-46723-8_54
[6]   No New-Net [J].
Isensee, Fabian ;
Kickingereder, Philipp ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :234-244
[7]  
Li RJ, 2014, LECT NOTES COMPUT SC, V8675, P305, DOI 10.1007/978-3-319-10443-0_39
[8]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[9]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[10]   3D MRI Brain Tumor Segmentation Using Autoencoder Regularization [J].
Myronenko, Andriy .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :311-320