Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation

被引:76
作者
Dorent, Reuben [1 ]
Joutard, Samuel [1 ]
Modat, Marc [1 ]
Ourselin, Sebastien [1 ]
Vercauteren, Tom [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-32245-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new deep learning method for tumour segmentation when dealing with missing imaging modalities. Instead of producing one network for each possible subset of observed modalities or using arithmetic operations to combine feature maps, our hetero-modal variational 3D encoder-decoder independently embeds all observed modalities into a shared latent representation. Missing data and tumour segmentation can be then generated from this embedding. In our scenario, the input is a random subset of modalities. We demonstrate that the optimisation problem can be seen as a mixture sampling. In addition to this, we introduce a new network architecture building upon both the 3D U-Net and the Multi-Modal Variational Auto-Encoder (MVAE). Finally, we evaluate our method on BraTS2018 using subsets of the imaging modalities as input. Our model outperforms the current state-of-the-art method for dealing with missing modalities and achieves similar performance to the subset-specific equivalent networks.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 14 条
  • [1] [Anonymous], 2018, P 32 INT C NEUR INF
  • [2] [Anonymous], 2014, ICLR
  • [3] Cao Y., 2014, ARXIV14107827 CORR
  • [4] NiftyNet: a deep-learning platform for medical imaging
    Gibson, Eli
    Li, Wenqi
    Sudre, Carole
    Fidon, Lucas
    Shakir, Dzhoshkun I.
    Wang, Guotai
    Eaton-Rosen, Zach
    Gray, Robert
    Doel, Tom
    Hu, Yipeng
    Whyntie, Tom
    Nachev, Parashkev
    Modat, Marc
    Barratt, Dean C.
    Ourselin, Sebastien
    Cardoso, M. Jorge
    Vercauteren, Tom
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 113 - 122
  • [5] Havaei Mohammad, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P469, DOI 10.1007/978-3-319-46723-8_54
  • [6] No New-Net
    Isensee, Fabian
    Kickingereder, Philipp
    Wick, Wolfgang
    Bendszus, Martin
    Maier-Hein, Klaus H.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 234 - 244
  • [7] Li RJ, 2014, LECT NOTES COMPUT SC, V8675, P305, DOI 10.1007/978-3-319-10443-0_39
  • [8] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [9] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [10] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320