Optimal packings of superdisks and the role of symmetry

被引:76
作者
Jiao, Y. [1 ]
Stillinger, F. H. [2 ]
Torquato, S. [2 ,3 ,4 ,5 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[4] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[5] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.100.245504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by vertical bar x(1)vertical bar(2p) + vertical bar x(2)vertical bar(2p) <= 1 and thus contain a large family of both convex (p >= 0.5) and concave (0 < p < 0.5) particles. Our candidate maximal packing arrangements are achieved by certain families of Bravais lattice packings, and the maximal density is nonanalytic at the "circular-disk" point (p = 1) and increases dramatically as p moves away from unity. Moreover, we show that the broken rotational symmetry of superdisks influences the packing characteristics in a nontrivial way.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
[Anonymous], 1994, GRANULAR MATTER
[2]  
Bowen L, 2003, DISCRETE COMPUT GEOM, V29, P23, DOI [10.1007/s00454-002-2791-7, 10.1007/s00454-002-0791-7]
[3]  
Cassels J. W. S., 1959, INTRO GEOMETRY NUMBE
[4]  
Chaikin P M., 1998, Principles of Condensed Matter Physics
[5]   Packing, tiling, and covering with tetrahedra [J].
Conway, J. H. ;
Torquato, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (28) :10612-10617
[6]  
Conway J.H., 1987, SPHERE PACKINGS LATT
[7]   Unusually dense crystal packings of ellipsoids [J].
Donev, A ;
Stillinger, FH ;
Chaikin, PM ;
Torquato, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :255506-1
[8]   Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details [J].
Donev, A ;
Torquato, S ;
Stillinger, FH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) :737-764
[9]   Improving the density of jammed disordered packings using ellipsoids [J].
Donev, A ;
Cisse, I ;
Sachs, D ;
Variano, E ;
Stillinger, FH ;
Connelly, R ;
Torquato, S ;
Chaikin, PM .
SCIENCE, 2004, 303 (5660) :990-993
[10]   Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids [J].
Donev, Aleksandar ;
Connelly, Robert ;
Stillinger, Frank H. ;
Torquato, Salvatore .
PHYSICAL REVIEW E, 2007, 75 (05)