Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

被引:0
|
作者
Miller, John [1 ]
Taori, Rohan [2 ]
Raghunathan, Aditi [2 ]
Sagawa, Shiori [2 ]
Koh, Pang Wei [2 ]
Shankar, Vaishaal [1 ]
Liang, Percy [2 ]
Carmon, Yair [3 ]
Schmidt, Ludwig [4 ]
机构
[1] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Tel Aviv Univ, Sch Comp Sci, Tel Aviv, Israel
[4] Toyota Res Inst, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For machine learning systems to be reliable, we must understand their performance in unseen, out-of-distribution environments. In this paper, we empirically show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts. Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet, a synthetic pose estimation task derived from YCB objects, FMoW-WILDS satellite imagery classification, and wildlife classification in iWildCam-WILDS. The correlation holds across model architectures, hyperparameters, training set size, and training duration, and is more precise than what is expected from existing domain adaptation theory. To complete the picture, we also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS. Finally, we provide a candidate theory based on a Gaussian data model that shows how changes in the data covariance arising from distribution shift can affect the observed correlations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Deep Stable Learning for Out-Of-Distribution Generalization
    Zhang, Xingxuan
    Cui, Peng
    Xu, Renzhe
    Zhou, Linjun
    He, Yue
    Shen, Zheyan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5368 - 5378
  • [22] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [23] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [25] In-Distribution Barrier Functions: Self-Supervised Policy Filters that Avoid Out-of-Distribution States
    Castaneda, Fernando
    Nishimura, Haruki
    McAllister, Rowan
    Sreenath, Koushil
    Gaidon, Adrien
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [26] On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
    Xin, Shiji
    Wang, Yifei
    Su, Jingtong
    Wang, Yisen
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10519 - 10527
  • [27] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66
  • [28] DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
    Sun, Xin
    Wang, Liang
    Liu, Qiang
    Wu, Shu
    Wang, Zilei
    Wang, Liang
    PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024, 2024, : 2794 - 2805
  • [29] Out-of-distribution detection with in-distribution voting using the medical example of chest x-ray classification
    Wollek, Alessandro
    Willem, Theresa
    Ingrisch, Michael
    Sabel, Bastian
    Lasser, Tobias
    MEDICAL PHYSICS, 2024, 51 (04) : 2721 - 2732
  • [30] Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
    Amir, Guy
    Maayan, Osher
    Zelazny, Tom
    Katz, Guy
    Schapira, Michael
    JOURNAL OF AUTOMATED REASONING, 2024, 68 (03)