A nonlinear viscoelastic constitutive model for cyclically loaded solid composite propellant

被引:26
作者
Tong, Xin [1 ,2 ]
Xu, Jinsheng [1 ]
Doghri, Issam [2 ]
El Ghezal, Marieme Imene [3 ]
Krairi, Anouar [4 ]
Chen, Xiong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[2] Catholic Univ Louvain, Inst Mech Mat & Civil Engn, B-1348 Louvain La Neuve, Belgium
[3] E Xstream Engn, Axis Pk Bldg H,Rue Emile Francqui 9, B-1435 Mont St Guibert, Belgium
[4] M2i, Burghweg 1, NL-2628 Delft, Netherlands
基金
中国国家自然科学基金;
关键词
Solid composite propellant; Hysteresis loop; Nonlinear viscoelasticity; Finite element method; PART I; POLYMERS; BEHAVIOR; IMPLEMENTATION; FORMULATION; FRAMEWORK; LAW;
D O I
10.1016/j.ijsolstr.2020.04.011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, a novel nonlinear viscoelastic constitutive model is proposed to describe the mechanical behavior of a polymer matrix composite (HTPB propellant). The model is built upon two stress-dependent nonlinear functions within the hereditary integral formulation of viscoelasticity. After implementation into a finite element code, the proposed model is utilized to simulate the stress-strain responses of cyclically loaded HTPB propellant. The results show that the model is capable of capturing the main characteristics of the hysteresis loops during fatigue process and good quantitative agreement is found under circumstances that self-heating effect is not evident. This paper deepens the understanding of the nonlinear behaviors of composite propellant under cyclic loading. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 35 条
[1]   A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part I: Theory [J].
Abu Al-Rub, Rashid K. ;
Darabi, Masoud K. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 34 :61-92
[2]   An extended Mori-Tanaka homogenization scheme for finite strain modeling of debonding in particle-reinforced elastomers [J].
Brassart, L. ;
Inglis, H. M. ;
Delannay, L. ;
Doghri, I. ;
Geubelle, P. H. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (03) :611-616
[3]   Development of viscoelastic/rate-sensitive-plastic constitutive law for fiber-reinforced composites and its applications. Part I: Theory and material characterization [J].
Chung, Kwansoo ;
Ryou, Hansun .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (02) :284-291
[4]   A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber [J].
Ciambella, J. ;
Paolone, A. ;
Vidoli, S. .
MECHANICS OF MATERIALS, 2010, 42 (10) :932-944
[5]   A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part II: Numerical aspects and application to asphalt concrete [J].
Darabi, Masoud K. ;
Abu Al-Rub, Rashid K. ;
Masad, Eyad A. ;
Little, Dallas N. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 35 :67-99
[6]   A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials [J].
Darabi, Masoud K. ;
Abu Al-Rub, Rashid K. ;
Masad, Eyad A. ;
Huang, Chien-Wei ;
Little, Dallas N. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (01) :191-207
[7]   Characterization of HTPB-based solid fuel formulations: Performance, mechanical properties, and pollution [J].
DeLuca, L. T. ;
Galfetti, L. ;
Maggi, F. ;
Colombo, G. ;
Merotto, L. ;
Boiocchi, M. ;
Paravan, C. ;
Reina, A. ;
Tadini, P. ;
Fanton, L. .
ACTA ASTRONAUTICA, 2013, 92 (02) :150-162
[8]   Cyclic strengthening of polypropylene under strain-controlled loading [J].
Drozdov, A. D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (29-30) :8781-8789
[9]   A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples [J].
Guo, Qiang ;
Zairi, Fahmi ;
Guo, Xinglin .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 101 :106-124
[10]   Numerical finite element formulation of the Schapery non-linear viscoelastic material model [J].
Haj-Ali, RM ;
Muliana, AH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (01) :25-45