A Novel Deep Learning Approach for Tracking Regions of Interest in Ultrasound Images

被引:5
作者
Wasih, Mohammad [1 ]
Almekkawy, Mohamed [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
Speckle Tracking; Correlation Filter Network; Siamese Network; Convolutional Neural Network; Cascaded Network; TRANSVERSE SECTION; LOCALIZATION;
D O I
10.1109/EMBC46164.2021.9631026
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to their great success in learning a universal object similarity metric, Siamese Trackers have been adopted for motion tracking a Region of Interest (ROI) in Ultrasound (US) image sequences. However, these Fully Convolutional Siamese networks (SiamFC) offer no online adaptation of the network and fail to take cues from the input sequence. The more recent Correlation Filter Networks (CFNet) solve this problem by learning the reference template online using a Correlation Filter layer. In this work, we use the CFNet as our backbone model and propose an advanced tracking algorithm (SeqCFNet) for tracking an ROI in US sequences by constructing a sequential cascade of two identical CFNet. The cascade with CFNet is novel and offers practical benefits in tracking accuracy. Our method is evaluated on 10 different sequences of a Carotid Artery (CA) dataset to track the transverse section of the carotid artery. Results show that Seq-CFNet obtains better Root Mean Square Error (RMSE) values than the baseline CFNet as well as SiamFC, without significantly compromising the speed.
引用
收藏
页码:4095 / 4098
页数:4
相关论文
共 50 条
[41]   A Novel Deep Learning Approach in Haematology for Classification of Leucocytes [J].
Bevilacqua, Vitoantonio ;
Brunetti, Antonio ;
Trotta, Gianpaolo Francesco ;
De Marco, Domenico ;
Quercia, Marco Giuseppe ;
Buongiorno, Domenico ;
D'Introno, Alessia ;
Girardi, Francesco ;
Guarini, Attilio .
QUANTIFYING AND PROCESSING BIOMEDICAL AND BEHAVIORAL SIGNALS, 2019, 103 :265-274
[42]   Deep learning approach for discrimination of liver lesions using nine time-phase images of contrast-enhanced ultrasound [J].
Kamiyama, Naohisa ;
Sugimoto, Katsutoshi ;
Nakahara, Ryuichi ;
Kakegawa, Tatsuya ;
Itoi, Takao .
JOURNAL OF MEDICAL ULTRASONICS, 2024, 51 (01) :83-93
[43]   Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses [J].
Nakata, Norio ;
Siina, Tsuyoshi .
BIOENGINEERING-BASEL, 2023, 10 (01)
[44]   DEEP LEARNING-BASED SUPER-RESOLUTION ULTRASOUND SPECKLE TRACKING VELOCIMETRY [J].
Park, Jun Hong ;
Choi, Woorak ;
Yoon, Gun Young ;
Lee, Sang Joon .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (03) :598-609
[45]   A Deep Learning Approach for Hepatic Steatosis Estimation from Ultrasound Imaging [J].
Colantonio, Sara ;
Salvati, Antonio ;
Caudai, Claudia ;
Bonino, Ferruccio ;
De Rosa, Laura ;
Pascali, Maria Antonietta ;
Germanese, Danila ;
Brunetto, Maurizia Rossana ;
Faita, Francesco .
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 1463 :703-714
[46]   Deep learning-assisted near-Earth asteroid tracking in astronomical images [J].
Du, Zhenhong ;
Jiang, Hai ;
Yang, Xu ;
Cheng, Hao-Wen ;
Liu, Jing .
ADVANCES IN SPACE RESEARCH, 2024, 73 (10) :5349-5362
[47]   A longan yield estimation approach based on UAV images and deep learning [J].
Li, Denghui ;
Sun, Xiaoxuan ;
Jia, Yuhang ;
Yao, Zhongwei ;
Lin, Peiyi ;
Chen, Yingyi ;
Zhou, Haobo ;
Zhou, Zhengqi ;
Wu, Kaixuan ;
Shi, Linlin ;
Li, Jun .
FRONTIERS IN PLANT SCIENCE, 2023, 14
[48]   A deep learning approach for brain tumor classification using MRI images* [J].
Aamir, Muhammad ;
Rahman, Ziaur ;
Dayo, Zaheer Ahmed ;
Abro, Waheed Ahmed ;
Uddin, M. Irfan ;
Khan, Inayat ;
Imran, Ali Shariq ;
Ali, Zafar ;
Ishfaq, Muhammad ;
Guan, Yurong ;
Hu, Zhihua .
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
[49]   DEEP LEARNING APPROACH TO EVALUATE FRACTURE PARAMETERS FROM PHOTOELASTIC IMAGES [J].
Sasikumar, Sachin ;
Ramesh, K. .
PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 12, 2021,
[50]   Deep learning segmentation of general interventional tools in two-dimensional ultrasound images [J].
Gillies, Derek J. ;
Rodgers, Jessica R. ;
Gyacskov, Igor ;
Roy, Priyanka ;
Kakani, Nirmal ;
Cool, Derek W. ;
Fenster, Aaron .
MEDICAL PHYSICS, 2020, 47 (10) :4956-4970