A Fully Unsupervised Deep Learning Framework for Non-Rigid Fundus Image Registration

被引:5
作者
Benvenuto, Giovana A. [1 ]
Colnago, Marilaine [2 ]
Dias, Mauricio A. [1 ]
Negri, Rogerio G. [3 ]
Silva, Erivaldo A. [1 ]
Casaca, Wallace [4 ]
机构
[1] Sao Paulo State Univ, Fac Sci & Technol, BR-19060900 Presidente Prudente, SP, Brazil
[2] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[3] Sao Paulo State Univ, Sci & Technol Inst, ICT, Sao Jose Dos Campos, BR-12224300 Sao Paulo, SP, Brazil
[4] Sao Paulo State Univ, Inst Biosci Letters & Exact Sci, Sao Jose Dos Campos, BR-12224300 Sao Paulo, SP, Brazil
来源
BIOENGINEERING-BASEL | 2022年 / 9卷 / 08期
基金
巴西圣保罗研究基金会;
关键词
fundus image; image registration; deep learning; computer vision applications;
D O I
10.3390/bioengineering9080369
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In ophthalmology, the registration problem consists of finding a geometric transformation that aligns a pair of images, supporting eye-care specialists who need to record and compare images of the same patient. Considering the registration methods for handling eye fundus images, the literature offers only a limited number of proposals based on deep learning (DL), whose implementations use the supervised learning paradigm to train a model. Additionally, ensuring high-quality registrations while still being flexible enough to tackle a broad range of fundus images is another drawback faced by most existing methods in the literature. Therefore, in this paper, we address the above-mentioned issues by introducing a new DL-based framework for eye fundus registration. Our methodology combines a U-shaped fully convolutional neural network with a spatial transformation learning scheme, where a reference-free similarity metric allows the registration without assuming any pre-annotated or artificially created data. Once trained, the model is able to accurately align pairs of images captured under several conditions, which include the presence of anatomical differences and low-quality photographs. Compared to other registration methods, our approach achieves better registration outcomes by just passing as input the desired pair of fundus images.
引用
收藏
页数:17
相关论文
共 61 条
[31]  
Kingma DP, 2014, ADV NEUR IN, V27
[32]  
Köhler T, 2013, COMP MED SY, P95, DOI 10.1109/CBMS.2013.6627771
[33]  
Kori A, 2019, Arxiv, DOI arXiv:1908.06213
[34]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[35]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[36]   Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study [J].
Lv, Jun ;
Yang, Ming ;
Zhang, Jue ;
Wang, Xiaoying .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1083)
[37]  
Mahapatra Dwarikanath, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P382, DOI 10.1007/978-3-319-66179-7_44
[38]  
Mahapatra D, 2018, I S BIOMED IMAGING, P1449, DOI 10.1109/ISBI.2018.8363845
[39]   Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation [J].
Manakov, Ilja ;
Rohm, Markus ;
Kern, Christoph ;
Schworm, Benedikt ;
Kortuem, Karsten ;
Tresp, Volker .
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER AND MEDICAL IMAGE LEARNING WITH LESS LABELS AND IMPERFECT DATA, DART 2019, MIL3ID 2019, 2019, 11795 :3-10
[40]   Vessel Optimal Transport for Automated Alignment of Retinal Fundus Images [J].
Motta, Danilo ;
Casaca, Wallace ;
Paiva, Afonso .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (12) :6154-6168