Glioblastoma multiforme: novel therapeutic targets

被引:59
作者
Muir, Matthew [1 ]
Gopakumar, Sricharan [1 ]
Traylor, Jeffrey [1 ]
Lee, Sungho [1 ]
Rao, Ganesh [1 ,2 ]
机构
[1] Baylor Coll Med, Dept Neurosurg, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Neurosurg, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
Glioblastoma; oncolytic virus; personalized therapy; signaling pathways; immunotherapy; tumor vaccines; therapeutic targets; oncogenic pathways; tumor microenvironment; tumor associated microglia and macrophages; TUMOR-ASSOCIATED MACROPHAGES; SUBEROYLANILIDE HYDROXAMIC ACID; I CLINICAL-TRIAL; RECURRENT GLIOBLASTOMA; STEM-CELLS; MALIGNANT GLIOMA; GENE-EXPRESSION; SIGNAL TRANSDUCERS; INHIBITOR; CANCER;
D O I
10.1080/14728222.2020.1762568
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: The increasingly detailed genetic characterization of glioblastoma (GBM) has failed to translate into meaningful breakthroughs in treatment. This is likely to be attributed to molecular heterogeneity of GBM. However, the understanding of the tumor microenvironment in GBM has become more refined and has revealed a wealth of therapeutic targets that may enable the disruption of angiogenesis or immunosuppression. Areas covered: This review discusses the selective targeting of tumor-intrinsic pathways, therapies that target the GBM tumor microenvironment and relevant preclinical studies and their limitations. Relevant literature was derived from a PubMed search encompassing studies from 1989 to 2020. Expert opinion: Despite appropriate target engagement, attempts to directly inhibit oncogenic pathways in GBM have yielded little success. This is likely attributed to the molecular heterogeneity of GBM and the presence of redundant signaling that allow for accumulation of adaptive mutations and development of drug resistance. Subsequently, there has been a shift toward therapies modulating the pro-angiogenic, immunosuppressive tumor microenvironment in GBM. The non-transformed cells in the microenvironment which includes endothelial cells, myeloid cells, and T cells, are presumably genetically stable, less susceptible to heterogeneity, and easier to target. This approach offers the highest potential for a therapeutic breakthrough in GBM.
引用
收藏
页码:605 / 614
页数:10
相关论文
共 115 条
[1]  
Afra D, 2002, LANCET, V359, P1011
[2]   Randomized Phase III controlled trials of therapy in malignant glioma: Where are we after 40 years? [J].
Anderson, E. ;
Grant, R. ;
Lewis, S. C. ;
Whittle, I. R. .
BRITISH JOURNAL OF NEUROSURGERY, 2008, 22 (03) :339-349
[3]   Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma [J].
Barrett, John A. ;
Cai, Hongliang ;
Miao, John ;
Khare, Pranay D. ;
Gonzalez, Paul ;
Dalsing-Hernandez, Jessica ;
Sharma, Geeta ;
Chan, Tim ;
Cooper, Laurence J. N. ;
Lebel, Francois .
CANCER GENE THERAPY, 2018, 25 (5-6) :106-116
[4]   Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection [J].
Berg, Johannes vom ;
Vrohlings, Melissa ;
Haller, Sergio ;
Haimovici, Aladin ;
Kulig, Paulina ;
Sledzinska, Anna ;
Weller, Michael ;
Becher, Burkhard .
JOURNAL OF EXPERIMENTAL MEDICINE, 2013, 210 (13) :2803-2811
[5]   Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma [J].
Berghoff, Anna Sophie ;
Kiesel, Barbara ;
Widhalm, Georg ;
Rajky, Orsolya ;
Ricken, Gerda ;
Woehrer, Adelheid ;
Dieckmann, Karin ;
Filipits, Martin ;
Brandstetter, Anita ;
Weller, Michael ;
Kurscheid, Sebastian ;
Hegi, Monika E. ;
Zielinski, Christoph C. ;
Marosi, Christine ;
Hainfellner, Johannes A. ;
Preusser, Matthias ;
Wick, Wolfgang .
NEURO-ONCOLOGY, 2015, 17 (08) :1064-1075
[6]  
BOGLER O, 1995, CANCER RES, V55, P2746
[7]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[8]   Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs [J].
Brown, Michael C. ;
Holl, Eda K. ;
Boczkowski, David ;
Dobrikova, Elena ;
Mosaheb, Mubeen ;
Chandramohan, Vidya ;
Bigner, Darell D. ;
Gromeier, Matthias ;
Nair, Smita K. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (408)
[9]   Immunotherapy of Primary Brain Tumors: Facts and Hopes [J].
Buerki, Robin A. ;
Chheda, Zinal S. ;
Okada, Hideho .
CLINICAL CANCER RESEARCH, 2018, 24 (21) :5198-5205
[10]   Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study [J].
Butowski, Nicholas ;
Colman, Howard ;
De Groot, John F. ;
Omuro, Antonio M. ;
Nayak, Lakshmi ;
Wen, Patrick Y. ;
Cloughesy, Timothy F. ;
Marimuthu, Adhirai ;
Haidar, Sam ;
Perry, Arie ;
Huse, Jason ;
Phillips, Joanna ;
West, Brian L. ;
Nolop, Keith B. ;
Hsu, Henry H. ;
Ligon, Keith L. ;
Molinaro, Annette M. ;
Prados, Michael .
NEURO-ONCOLOGY, 2016, 18 (04) :557-564