Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst

被引:181
作者
Bielinski, Elizabeth A. [1 ]
Foerster, Moritz [2 ]
Zhang, Yuanyuan [3 ]
Bernskoetter, Wesley H. [3 ]
Hazari, Nilay [1 ]
Holthausen, Max C. [2 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[2] Goethe Univ Frankfurt, Inst Anorgan & Analyt Chem, D-60438 Frankfurt, Germany
[3] Brown Univ, Dept Chem, Providence, RI 02912 USA
来源
ACS CATALYSIS | 2015年 / 5卷 / 04期
基金
美国国家科学基金会;
关键词
iron; catalysis; methanol dehydrogenation; metal-ligand cooperativity; pincer ligands; DFT calculations; HYDROGEN-PRODUCTION; FORMIC-ACID; GENERATION; COMPLEXES; CATALYST; WATER; RUTHENIUM; MECHANISM; ALCOHOLS; ETHANOL;
D O I
10.1021/acscatal.5b00137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen is an attractive alternative energy vector to fossil fuels if effective methods for its storage and release can be developed. In particular, methanol, with a gravimetric hydrogen content of 12.6%, is a promising target for chemical hydrogen storage. To date, there are relatively few homogeneous transition metal compounds that catalyze the aqueous phase dehydrogenation of methanol to release hydrogen and carbon dioxide. In general, these catalysts utilize expensive precious metals and require a strong base. This paper shows that a pincer-supported Fe compound and a co-catalytic amount of a Lewis acid are capable of catalyzing base-free aqueous phase methanol dehydrogenation with turnover numbers up to 51 000. This is the highest turnover number reported for either a first-row transition metal or a base-free system. Additionally, this paper describes preliminary mechanistic experiments to understand the reaction pathway and propose a stepwise process, which requires metal ligand cooperativity. This pathway is supported by DFT calculations and explains the role of the Lewis acid co-catalyst.
引用
收藏
页码:2404 / 2415
页数:12
相关论文
共 45 条
  • [1] Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions
    Alberico, Elisabetta
    Sponholz, Peter
    Cordes, Christoph
    Nielsen, Martin
    Drexler, Hans-Joachim
    Baumann, Wolfgang
    Junge, Henrik
    Beller, Matthias
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (52) : 14162 - 14166
  • [2] Mechanisms of Formation of Hemiacetals: Intrinsic Reactivity Analysis
    Azofra, Luis Miguel
    Alkorta, Ibon
    Elguero, Jose
    Toro-Labbe, Alejandro
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (31) : 8250 - 8259
  • [3] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [4] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [5] Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
    Bielinski, Elizabeth A.
    Lagaditis, Paraskevi O.
    Zhang, Yuanyuan
    Mercado, Brandon Q.
    Wuertele, Christian
    Bernskoetter, Wesley H.
    Hazari, Nilay
    Schneider, Sven
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) : 10234 - 10237
  • [6] HYDROGEN ECONOMY
    BOCKRIS, JOM
    [J]. SCIENCE, 1972, 176 (4041) : 1323 - &
  • [7] The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment
    Bockris, JOM
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (7-8) : 731 - 740
  • [8] Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
    Boddien, Albert
    Loges, Bjoern
    Junge, Henrik
    Beller, Matthias
    [J]. CHEMSUSCHEM, 2008, 1 (8-9) : 751 - 758
  • [9] Mild and selective hydrogenation of aromatic and aliphatic (di) nitriles with a well-defined iron pincer complex
    Bornschein, Christoph
    Werkmeister, Svenja
    Wendt, Bianca
    Jiao, Haijun
    Alberico, Elisabetta
    Baumann, Wolfgang
    Junge, Henrik
    Junge, Kathrin
    Beller, Matthias
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Campos J., 2015, INORG CHEM, DOI [10.1021/ic502521c, DOI 10.1021/IC502521C]