Annihilators for Harmonic Differential Forms Via Clifford Analysis

被引:0
作者
Abreu-Blaya, Ricardo [1 ]
Bory-Reyes, Juan [2 ]
Delanghe, Richard [3 ]
Sommen, Frank [3 ]
机构
[1] Univ Holguin, Fac Informat & Matemat, Holguin 80100, Cuba
[2] Univ Oriente, Dept Matemat, Santiago De Cuba 90500, Cuba
[3] Univ Ghent, Dept Math Anal, Fac Engn, B-9000 Ghent, Belgium
关键词
Harmonic forms; Clifford analysis; duality theory; DUALITY;
D O I
10.1007/s00006-010-0268-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe completely the annihilators of harmonic differential forms into the Clifford analysis approach.
引用
收藏
页码:443 / 454
页数:12
相关论文
共 12 条
[1]   Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis [J].
Abreu-Blaya, R ;
Bory-Reyes, J ;
Delanghe, R ;
Sommen, F .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (01) :95-110
[2]   Duality for harmonic differential forms via Clifford analysis [J].
Abreu-Blaya, Ricardo ;
Bory-Reyes, Juan ;
Delanghe, Richard ;
Sommen, Frank .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (04) :589-610
[3]  
[Anonymous], 2012, Clifford algebra to geometric calculus: a unified language for mathematics and physics
[4]  
BLAYA RA, COMPLEX ANA IN PRESS
[5]  
Brackx F., 1982, Clifford analysis
[6]   DUALITY IN HYPERCOMPLEX FUNCTION-THEORY [J].
DELANGHE, R ;
BRACKX, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1980, 37 (02) :164-181
[7]  
Delanghe R., 1992, MATH ITS APPL, V53
[8]  
GUSTAFSSON B, 1996, ZAP NAUCHN SEM POMI, V232, P90
[9]  
Kothe G., 1953, J REINE ANGEW MATH, V191, P30, DOI [10.1515/crll.1953.191.30, DOI 10.1515/CRLL.1953.191.30]
[10]  
Moisil G. C., 1931, Mathematica. Cluj, V5, P142