High-pressure magnetization and NMR studies of α-RuCl3

被引:45
作者
Cui, Y. [1 ,2 ]
Zheng, J. [1 ,2 ,3 ,4 ,5 ]
Ran, K. [4 ,5 ]
Wen, Jinsheng [6 ]
Liu, Zheng-Xin [1 ,2 ]
Liu, B. [3 ]
Guo, Wenan [7 ]
Yu, Weiqiang [1 ,2 ,8 ]
机构
[1] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[2] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China
[3] Beijing Jiaotong Univ, Dept Phys, Beijing 100044, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[5] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[7] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[8] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
SPIN; STATE;
D O I
10.1103/PhysRevB.96.205147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report high-pressure magnetization and Cl-35 NMR studies on alpha-RuCl3 with pressure up to 1.5 GPa. At low pressures, the magnetic ordering is identified by both the magnetization data and the NMR data, where the TN shows a concave shape dependence with pressure. These data suggest stacking rearrangement along the c axis. With increasing pressure, phase separation appears prominently at P >= 0.45 GPa, and the magnetic volume fraction is completely suppressed at P >= 1.05 GPa. Meanwhile, a phase-transition-like behavior emerges at high pressures in the remaining volume by a sharp drop of magnetization M(T) upon cooling, with the transition temperature T-x increased to 250 K at 1 GPa. The 1/T-35(1) is reduced by over three orders of magnitude when cooled below 100 K. This characterizes a high-pressure, low-temperature phase with nearly absent static susceptibility and low-energy spin fluctuations. The nature of the high-pressure ground state is discussed, where a magnetically disordered state is proposed as a candidate state.
引用
收藏
页数:8
相关论文
共 44 条
[1]  
Abragam A., 1983, The Principles of Nuclear Magnetism
[2]   Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl3 [J].
Baek, S-H. ;
Do, S-H. ;
Choi, K-Y. ;
Kwon, Y. S. ;
Wolter, A. U. B. ;
Nishimoto, S. ;
van den Brink, Jeroen ;
Buechner, B. .
PHYSICAL REVIEW LETTERS, 2017, 119 (03)
[3]  
Banerjee A, 2016, NAT MATER, V15, P733, DOI [10.1038/nmat4604, 10.1038/NMAT4604]
[4]   Neutron scattering in the proximate quantum spin liquid α-RuCl3 [J].
Banerjee, Arnab ;
Yan, Jiaqiang ;
Knolle, Johannes ;
Bridges, Craig A. ;
Stone, Matthew B. ;
Lumsden, Mark D. ;
Mandrus, David G. ;
Tennant, David A. ;
Moessner, Roderich ;
Nagler, Stephen E. .
SCIENCE, 2017, 356 (6342) :1055-1058
[5]   Jeff=1/2 Mott-Insulating State in Rh and Ir Fluorides [J].
Birol, Turan ;
Haule, Kristjan .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[6]   Low-temperature crystal and magnetic structure of α-RuCl3 [J].
Cao, H. B. ;
Banerjee, A. ;
Yan, J. -Q. ;
Bridges, C. A. ;
Lumsden, M. D. ;
Mandrus, D. G. ;
Tennant, D. A. ;
Chakoumakos, B. C. ;
Nagler, S. E. .
PHYSICAL REVIEW B, 2016, 93 (13)
[7]   Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3 [J].
Chaloupka, Jiri ;
Khaliullin, Giniyat .
PHYSICAL REVIEW B, 2016, 94 (06)
[8]   Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A2IrO3 [J].
Chaloupka, Jiri ;
Jackeli, George ;
Khaliullin, Giniyat .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)
[9]  
Chun SH, 2015, NAT PHYS, V11, P462, DOI [10.1038/NPHYS3322, 10.1038/nphys3322]
[10]  
Fazekas P., 1999, Lecture Notes on Electron Correlation and Magnetism