Symmetry breaking of spatial Kerr solitons in fractional dimension

被引:66
作者
Li, Pengfei [1 ]
Malomed, Boris A. [2 ,3 ]
Mihalache, Dumitru [4 ]
机构
[1] Taiyuan Normal Univ, Dept Phys, Jinzhong 030619, Peoples R China
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Horia Hulubei Natl Inst Phys & Nucl Engn, RO-077125 Bucharest, Romania
基金
以色列科学基金会; 中国国家自然科学基金; 山西省青年科学基金;
关键词
Symmetry breaking; Nonlinear fractional Schrodinger equation; Spatial soliton; ENERGY AIRY BEAMS; SCHRODINGER-EQUATION; ASYMMETRIC SOLITONS; PROPAGATION DYNAMICS; GAP SOLITONS; BIFURCATION; STABILITY; STATES; PHYSICS; LIGHT;
D O I
10.1016/j.chaos.2020.109602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study symmetry breaking of solitons in the framework of a nonlinear fractional Schrodinger equation (NLFSE), characterized by its Levy index, with cubic nonlinearity and a symmetric double-well potential. Asymmetric, symmetric, and antisymmetric soliton solutions are found, with stable asymmetric soliton solutions emerging from unstable symmetric and antisymmetric ones by way of symmetry-breaking bifurcations. Two different bifurcation scenarios are possible. First, symmetric soliton solutions undergo a symmetry-breaking bifurcation of the pitchfork type, which gives rise to a branch of asymmetric solitons, under the action of the self-focusing nonlinearity. Second, a family of asymmetric solutions branches offfrom antisymmetric states in the case of self-defocusing nonlinearity through a bifurcation of an inverted-pitchfork type. Systematic numerical analysis demonstrates that increase of the Levy index leads to shrinkage or expansion of the symmetry-breaking region, depending on parameters of the double-well potential. Stability of the soliton solutions is explored following the variation of the Levy index, and the results are confirmed by direct numerical simulations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Symmetry-breaking transverse solitons in a resonant bilayer [J].
Babushkin, IV ;
Logvin, YA ;
Loiko, NA .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (03) :L15-L17
[22]   Quadratic fractional solitons [J].
Zeng, Liangwei ;
Zhu, Yongle ;
Malomed, Boris A. ;
Mihalache, Dumitru ;
Wang, Qing ;
Long, Hu ;
Cai, Yi ;
Lu, Xiaowei ;
Li, Jingzhen .
CHAOS SOLITONS & FRACTALS, 2022, 154
[23]   Symmetry and symmetry breaking of quasicrystals and their applications [J].
Fan, Tian-You ;
Tang, Zhi-Yi .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2025, 39 (11)
[24]   Two-dimensional fractional PPT-symmetric cubic-quintic NLS equation: Double-loop symmetry breaking bifurcations, ghost states and dynamics [J].
Zhong, Ming .
PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
[25]   Weakly nonparaxial spatial solitons in a medium with Kerr nonlinearity [J].
N. N. Rozanov .
Optics and Spectroscopy, 2000, 89 :422-428
[26]   Interactions of spatial solitons with fused couplers [J].
Harel, Alon ;
Malomed, Boris A. .
PHYSICAL REVIEW A, 2014, 89 (04)
[27]   Gray solitons in parity-time-symmetric localized potentials with fractional-order diffraction [J].
Che, Wanwei ;
Yang, Feiwen ;
Cao, Shulei ;
Wu, Zhongli ;
Zhu, Xing ;
He, Yingji .
PHYSICS LETTERS A, 2021, 413
[28]   Spontaneous symmetry breaking in coupled parametrically driven waveguides [J].
Dror, Nir ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2009, 79 (01)
[29]   Optical solitons, self-focusing, and wave collapse in a space-fractional Schrodinger equation with a Kerr-type nonlinearity [J].
Chen, Manna ;
Zeng, Shihao ;
Lu, Daquan ;
Hu, Wei ;
Guo, Qi .
PHYSICAL REVIEW E, 2018, 98 (02)
[30]   Symmetry Breaking in Fractional Difference Chaotic Equations and Their Control [J].
Diabi, Louiza ;
Ouannas, Adel ;
Grassi, Giuseppe ;
Momani, Shaher .
SYMMETRY-BASEL, 2025, 17 (03)