Uncertainty relations for joint measurements of noncommuting observables

被引:84
|
作者
Ozawa, M [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Heisenberg; uncertainty relation; uncertainty principle; joint measurements; noise; positive operator-valued measures;
D O I
10.1016/j.physleta.2003.12.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Universally valid uncertainty relations are proven in a model independent formulation for inherent and unavoidable extra noises in arbitrary joint measurements on single systems, from which Heisenberg's original uncertainty relation is proven valid for any joint measurements with statistically independent noises. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [1] Memory effects in a sequence of measurements of noncommuting observables
    Walls, Sophia M.
    Ford, Ian J.
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [3] Approximate joint measurements of qubit observables
    Busch, Paul
    Heinosaari, Teiko
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 797 - 818
  • [4] Variance-based uncertainty relations for incompatible observables
    Chen, Bin
    Cao, Ning-Ping
    Fei, Shao-Ming
    Long, Gui-Lu
    QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3909 - 3917
  • [5] Variance-based uncertainty relations for incompatible observables
    Bin Chen
    Ning-Ping Cao
    Shao-Ming Fei
    Gui-Lu Long
    Quantum Information Processing, 2016, 15 : 3909 - 3917
  • [6] Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation
    Barchielli, Alberto
    Gregoratti, Matteo
    Toigo, Alessandro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) : 1253 - 1304
  • [7] Testing Heisenberg-Type Measurement Uncertainty Relations of Three Observables
    Mao, Ya-Li
    Chen, Hu
    Niu, Chang
    Li, Zheng-Da
    Yu, Sixia
    Fan, Jingyun
    PHYSICAL REVIEW LETTERS, 2023, 131 (15)
  • [8] Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis’ entropies
    Alexey E. Rastegin
    Quantum Information Processing, 2013, 12 : 2947 - 2963
  • [9] Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis' entropies
    Rastegin, Alexey E.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (09) : 2947 - 2963
  • [10] Uncertainty Relations for General Canonically Conjugate Observables in Terms of Unified Entropies
    Rastegin, Alexey E.
    FOUNDATIONS OF PHYSICS, 2015, 45 (08) : 923 - 942