Subdiffusion and Many-Body Quantum Chaos with Kinetic Constraints

被引:50
作者
Singh, Hansveer [1 ]
Ware, Brayden A. [1 ]
Vasseur, Romain [1 ]
Friedman, Aaron J. [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
关键词
STATISTICAL-MECHANICS; DYNAMICS; THERMALIZATION; TRANSPORT;
D O I
10.1103/PhysRevLett.127.230602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functions, and find that their characteristic timescales are given by the inverse gap of an effective Hamiltonian-or equivalently, a transfer matrix describing a classical Markov process. Our approach allows us to connect directly the Thouless time, tTh, determined by the spectral form factor, to transport properties and linear-response correlators. Using tensor network methods, we determine the dynamical exponent z for a number of constrained, conserving models. We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics, depending on the severity of the constraints. In particular, we show that quantum systems with "Fredkin" constraints exhibit anomalous transport with dynamical exponent z similar or equal to 8/3.
引用
收藏
页数:6
相关论文
共 90 条
[1]  
Bastianello A., ARXIV210804845
[2]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[3]   Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[4]   Controlling quantum many-body dynamics in driven Rydberg atom arrays [J].
Bluvstein, D. ;
Omran, A. ;
Levine, H. ;
Keesling, A. ;
Semeghini, G. ;
Ebadi, S. ;
Wang, T. T. ;
Michailidis, A. A. ;
Maskara, N. ;
Ho, W. W. ;
Choi, S. ;
Serbyn, M. ;
Greiner, M. ;
Vuletic, V. ;
Lukin, M. D. .
SCIENCE, 2021, 371 (6536) :1355-+
[5]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[6]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58
[7]   Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems [J].
Brouwer, PW ;
Beenakker, CWJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (10) :4904-4934
[8]   Solution of a Minimal Model for Many-Body Quantum Chaos [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW X, 2018, 8 (04)
[9]   Spectral Statistics in Spatially Extended Chaotic Quantum Many-Body Systems [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW LETTERS, 2018, 121 (06)
[10]   The eigenstate thermalization hypothesis in constrained Hilbert spaces: A case study in non-Abelian anyon chains [J].
Chandran, A. ;
Schulz, Marc D. ;
Burnell, F. J. .
PHYSICAL REVIEW B, 2016, 94 (23)