On the chromatic number of the Erdos-Renyi orthogonal polarity graph

被引:0
作者
Peng, Xing [1 ]
Tait, Michael [1 ]
Timmons, Craig [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
关键词
orthogonal polarity graphs; Turan number; forbidden subgraph; chromatic number; INDEPENDENCE NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prime power q, let ERq denote the Erdos-Renyi orthogonal polarity graph. We prove that if q is an even power of an odd prime, then chi(ERq) <= 2 root q + O( root q/ log q). This upper bound is best possible up to a constant factor of at most 2. If q is an odd power of an odd prime and satisfies some condition on irreducible polynomials, then we improve the best known upper bound for chi(ERq) substantially. We also show that for sufficiently large q, every ERq contains a subgraph that is not 3-chromatic and has at most 36 vertices.
引用
收藏
页数:19
相关论文
共 18 条
[1]   Turan numbers of bipartite graphs plus an odd cycle [J].
Allen, Peter ;
Keevash, Peter ;
Sudakov, Benny ;
Verstraete, Jacques .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 :134-162
[2]   Coloring graphs with sparse neighborhoods [J].
Alon, N ;
Krivelevich, M ;
Sudakov, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (01) :73-82
[3]   Superconnectivity of graphs with odd girth g and even girth h [J].
Balbuena, C. ;
Garcia-Vazquez, P. ;
Montejano, L. P. .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) :91-99
[4]   ON GRAPHS THAT DO NOT CONTAIN A THOMSEN GRAPH [J].
BROWN, WG .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03) :281-&
[5]   Combinatorial problems in finite fields and Sidon sets [J].
Cilleruelo, Javier .
COMBINATORICA, 2012, 32 (05) :497-511
[6]   On the Lovasz v-number of almost regular graphs with application to Erdos-Renyi graphs [J].
de Klerk, E. ;
Newman, M. W. ;
Pasechnik, D. V. ;
Sotirov, R. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (04) :879-888
[7]  
Erdos P., 1966, Studia Sci. Math. Hung., V1, P215
[8]   GRAPHS WITHOUT QUADRILATERALS [J].
FUREDI, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (02) :187-190
[9]   On the number of edges of quadrilateral-free graphs [J].
Furedi, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (01) :1-6
[10]   Eigenvalue bounds for independent sets [J].
Godsil, C. D. ;
Newman, M. W. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) :721-734