Selecting inputs for modeling using normalized higher order statistics and independent component analysis

被引:46
作者
Back, AD [1 ]
Trappenberg, TP [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 03期
关键词
higher order statistics; independent component analysis; input variable selection;
D O I
10.1109/72.925564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of input variable selection is well known in the task of modeling real-world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics, Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.
引用
收藏
页码:612 / 617
页数:6
相关论文
共 16 条
  • [1] AMARI S, 1998, P IEEE
  • [2] [Anonymous], 1994, Kendall's Advanced Theory of Statistics, Distribution theory
  • [3] BONNLANDER BV, 1994, P INT S ART NEUR NET, P42
  • [4] An iterative pruning algorithm for feedforward neural networks
    Castellano, G
    Fanelli, AM
    Pelillo, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 519 - 531
  • [5] DeMers D., 1993, Advances in Neural Information Processing Systems, P580
  • [6] PRUNING RECURRENT NEURAL NETWORKS FOR IMPROVED GENERALIZATION PERFORMANCE
    GILES, CL
    OMLIN, CW
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (05): : 848 - 851
  • [7] GIROLAMI M, 1996, P 2 NSYSN WORKSH ADV, P163
  • [8] PRUNING FROM ADAPTIVE REGULARIZATION
    HANSEN, LK
    RASMUSSEN, CE
    [J]. NEURAL COMPUTATION, 1994, 6 (06) : 1223 - 1232
  • [9] Hassibi B., 1993, ADV NEURAL INFORM PR, P164, DOI DOI 10.5555/645753.668069
  • [10] BLIND SEPARATION OF SOURCES .1. AN ADAPTIVE ALGORITHM BASED ON NEUROMIMETIC ARCHITECTURE
    JUTTEN, C
    HERAULT, J
    [J]. SIGNAL PROCESSING, 1991, 24 (01) : 1 - 10