JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, TELIN IPI Imec, Dept Telecommun & Informat Proc, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Hubei, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
关键词
Hyperspectral images; joint sparsity; sparse subspace clustering; super-pixels segmentation;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sparse subspace clustering (SSC) has been widely applied in remote sensing demonstrating excellent performance. Recent extensions incorporate spatial information, typically via smoothness-enforcing regularization. We propose an alternative approach: a joint sparsity SSC model, where pixels within a local region are enforced to select a common set of samples in the subspace-sparse representation. The corresponding optimization problem is solved by the alternating direction method of multipliers (ADMM). Experimental results on real data show a significant improvement over SSC and related state-of-the-art methods.
引用
收藏
页码:3878 / 3882
页数:5
相关论文
共 50 条
  • [41] An anomaly detection algorithm for hyperspectral images using subspace sparse representation
    Cheng B.
    Zhao C.
    Zhang L.
    Cheng, Baozhi (chengbaozhigy@163.com), 1600, Editorial Board of Journal of Harbin Engineering (38): : 640 - 645
  • [42] Joint Local Abundance Sparse Unmixing for Hyperspectral Images
    Rizkinia, Mia
    Okuda, Masahiro
    REMOTE SENSING, 2017, 9 (12)
  • [43] HYPERSPECTRAL IMAGES SUPER-RESOLUTION ALGORITHMS BASED ON SPECTRAL SUBSPACE SPARSE TENSOR FACTORIZATION
    Sun, Shasha
    Bao, Wenxing
    Guo, Hao
    Qu, Kewen
    Feng, Wei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7455 - 7458
  • [44] Superpixel-Based Feature Learning for Joint Sparse Representation of Hyperspectral Images
    Alasvand, Zehtab
    Naderan, Marjan
    Akbarizadeh, Gholamreza
    2017 3RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2017, : 156 - 159
  • [45] Region-division-based joint sparse representation classification for hyperspectral images
    Yan, Jingwen
    Chen, Hongda
    Zhai, Yikui
    Liu, Yinan
    Liu, Lei
    IET IMAGE PROCESSING, 2019, 13 (10) : 1694 - 1704
  • [46] Spectral-Spatial Clustering of Hyperspectral Remote Sensing Image with Sparse Subspace Clustering Model
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    Xu, Xiong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [47] Subspace Clustering with Sparsity and Grouping Effect
    Zhang, Binbin
    Wang, Weiwei
    Feng, Xiangchu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [48] HYPERSPECTRAL IMAGE KERNEL SPARSE SUBSPACE CLUSTERING WITH SPATIAL MAX POOLING OPERATION
    Zhang, Hongyan
    Zhai, Han
    Liao, Wenzhi
    Cao, Liqin
    Zhang, Liangpei
    Pizurica, Aleksandra
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 945 - 948
  • [49] Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification
    Sun, Weiwei
    Zhang, Liangpei
    Du, Bo
    Li, Weiyue
    Lai, Yenming Mark
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2784 - 2797
  • [50] Hierarchical Sparse Subspace Clustering (HESSC): An Automatic Approach for Hyperspectral Image Analysis
    Shahi, Kasra Rafiezadeh
    Khodadadzadeh, Mahdi
    Tusa, Laura
    Ghamisi, Pedram
    Tolosana-Delgado, Raimon
    Gloaguen, Richard
    REMOTE SENSING, 2020, 12 (15)