JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, TELIN IPI Imec, Dept Telecommun & Informat Proc, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Hubei, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
关键词
Hyperspectral images; joint sparsity; sparse subspace clustering; super-pixels segmentation;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sparse subspace clustering (SSC) has been widely applied in remote sensing demonstrating excellent performance. Recent extensions incorporate spatial information, typically via smoothness-enforcing regularization. We propose an alternative approach: a joint sparsity SSC model, where pixels within a local region are enforced to select a common set of samples in the subspace-sparse representation. The corresponding optimization problem is solved by the alternating direction method of multipliers (ADMM). Experimental results on real data show a significant improvement over SSC and related state-of-the-art methods.
引用
收藏
页码:3878 / 3882
页数:5
相关论文
共 50 条
  • [21] Bipartite Graph Partition Based Coclustering With Joint Sparsity for Hyperspectral Images
    Huang, Nan
    Xiao, Liang
    Xu, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4698 - 4711
  • [22] Multiview Subspace Clustering of Hyperspectral Images Based on Graph Convolutional Networks
    Li, Xianju
    Guan, Renxiang
    Li, Zihao
    Liu, Hao
    Yang, Jing
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 95 - 107
  • [23] Spatial distribution preserving-based sparse subspace clustering for hyperspectral image
    Ding, Yiyang
    Qin, Anyong
    Shang, Zhaowei
    Qian, Jiye
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (02)
  • [24] Leaf Clustering Based on Sparse Subspace Clustering
    Ding, Yun
    Yan, Qing
    Zhang, Jing-Jing
    Xun, Li-Na
    Zheng, Chun-Hou
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 55 - 66
  • [25] Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images
    Li, Xianlu
    Nadisic, Nicolas
    Huang, Shaoguang
    Pizurica, Aleksandra
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2022 - 2026
  • [26] Tensorial Multiview Subspace Clustering for Polarimetric Hyperspectral Images
    Chen, Zhengyi
    Zhang, Chunmin
    Mu, Tingkui
    He, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Multi-Objective Sparse Subspace Clustering for Hyperspectral Imagery
    Wan, Yuting
    Zhong, Yanfei
    Ma, Ailong
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2290 - 2307
  • [28] A discriminated similarity matrix construction based on sparse subspace clustering algorithm for hyperspectral imagery
    Yan, Qing
    Ding, Yun
    Zhang, Jing-Jing
    Xia, Yi
    Zheng, Chun-Hou
    COGNITIVE SYSTEMS RESEARCH, 2019, 53 : 98 - 110
  • [29] Contrastive Multiview Subspace Clustering of Hyperspectral Images Based on Graph Convolutional Networks
    Guan, Renxiang
    Li, Zihao
    Tu, Wenxuan
    Wang, Jun
    Liu, Yue
    Li, Xianju
    Tang, Chang
    Feng, Ruyi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [30] An Efficient Representation-Based Subspace Clustering Framework for Polarized Hyperspectral Images
    Chen, Zhengyi
    Zhang, Chunmin
    Mu, Tingkui
    Yan, Tingyu
    Chen, Zeyu
    Wang, Yanqiang
    REMOTE SENSING, 2019, 11 (13)