JOINT SPARSITY BASED SPARSE SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGES

被引:0
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, TELIN IPI Imec, Dept Telecommun & Informat Proc, Ghent, Belgium
[2] Wuhan Univ, State Key Lab Inform Engn Surveying Mapping & Rem, Wuhan, Hubei, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
关键词
Hyperspectral images; joint sparsity; sparse subspace clustering; super-pixels segmentation;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Sparse subspace clustering (SSC) has been widely applied in remote sensing demonstrating excellent performance. Recent extensions incorporate spatial information, typically via smoothness-enforcing regularization. We propose an alternative approach: a joint sparsity SSC model, where pixels within a local region are enforced to select a common set of samples in the subspace-sparse representation. The corresponding optimization problem is solved by the alternating direction method of multipliers (ADMM). Experimental results on real data show a significant improvement over SSC and related state-of-the-art methods.
引用
收藏
页码:3878 / 3882
页数:5
相关论文
共 50 条
  • [1] Semisupervised Sparse Subspace Clustering Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (03) : 989 - 999
  • [2] CLUSTERING HYPERSPECTRAL IMAGES VIA SPARSE DICTIONARY LEARNING WITH JOINT SPARSITY AND SHAREDWAVELETS
    Huang, Nan
    Xiao, Liang
    Tang, Songze
    Liu, Qichao
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 803 - 806
  • [3] Sparse Subspace Clustering for Hyperspectral Images with Missing Pixels
    Bacca, Jorge
    Sanchez, Karen
    Arguello, Henry
    2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [4] Efficient sparse subspace clustering for polarized hyperspectral images
    Chen, Zhengyi
    Zhang, Chunmin
    THIRD INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2019, 11052
  • [5] The improved CESSC algorithm based on meanshift sparse subspace clustering for hyperspectral images
    Wang ChengZhi
    Ding Yun
    Yang Jipan
    YanQing
    Zhang DeXiang
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 1280 - 1285
  • [6] Class Probability Propagation of Supervised Information Based on Sparse Subspace Clustering for Hyperspectral Images
    Yan, Qing
    Ding, Yun
    Xia, Yi
    Chong, Yanwen
    Zheng, Chunhou
    REMOTE SENSING, 2017, 9 (10)
  • [7] Gaussian Kernel Dynamic Similarity Matrix Based Sparse Subspace Clustering for Hyperspectral Images
    Long, Yonghong
    Deng, Xiuqin
    Zhong, Guoxiang
    Fan, Juan
    Liu, Fuchun
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 211 - 215
  • [8] SKETCHED SPARSE SUBSPACE CLUSTERING FOR LARGE-SCALE HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1766 - 1770
  • [9] Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [10] LANDMARK-BASED LARGE-SCALE SPARSE SUBSPACE CLUSTERING METHOD FOR HYPERSPECTRAL IMAGES
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 799 - 802