On Weierstrass mock modular forms and a dimension formula for certain vertex operator algebras

被引:3
作者
Beneish, Lea [1 ]
Mertens, Michael H. [2 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr, Atlanta, GA 30322 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Weierstrass mock modular forms; VOAs; Orbifold theories; MEROMORPHIC JACOBI FORMS; MOONSHINE; INVARIANCE; STRINGS;
D O I
10.1007/s00209-020-02499-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques from the theory of mock modular forms and harmonic Maass forms, especially Weierstrass mock modular forms, we establish several dimension formulas for certain holomorphic, strongly rational vertex operator algebras, complementing previous work by van Ekeren, Moller, and Scheithauer.
引用
收藏
页码:59 / 80
页数:22
相关论文
共 55 条
  • [1] Weierstrass mock modular forms and elliptic curves
    Alfes C.
    Griffin M.
    Ono K.
    Rolen L.
    [J]. Research in Number Theory, 1 (1)
  • [2] Shifted convolution L-series values for elliptic curves
    Ali, Asra
    Mani, Nitya
    [J]. ARCHIV DER MATHEMATIK, 2018, 110 (03) : 225 - 244
  • [3] K3 Elliptic Genus and an Umbral Moonshine Module
    Anagiannis, Vassilis
    Cheng, Miranda C. N.
    Harrison, Sarah M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (02) : 647 - 680
  • [4] [Anonymous], INT MATH RES NOT
  • [5] [Anonymous], 1988, PURE APPL MATH
  • [6] [Anonymous], 1979, Bull. London Math. Soc
  • [7] [Anonymous], 1995, THESIS
  • [8] [Anonymous], 2012, ARXIV12086254
  • [9] [Anonymous], 2004, PROGR MATH
  • [10] [Anonymous], 1957, Einfuhrung in die transzendenten Zahlen