Deep multi-label learning for image distortion identification

被引:13
|
作者
Liang, Dong [1 ]
Gao, Xinbo [1 ]
Lu, Wen [1 ]
He, Lihuo [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Video & Image Proc Syst Lab, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Image distortion identification; Multi-label learning; Convolutional neural network; Multi-task learning; Deep learning; QUALITY ASSESSMENT; CLASSIFICATION;
D O I
10.1016/j.sigpro.2020.107536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image Distortion Identification is important for image processing system enhancement, image distortion correction and image quality assessment. Although images may suffer various number of distortions while going through different systems, most of the previous researches of image distortion identification were focus on identifying single distortion in image. In this paper, we proposed a CNN-based multi-label learning model (called MLLNet) to identify distortions for different scenarios, including images having no distortion, single distortion and multiple distortions. Concretely, we transform the multi-label classification for image distortion identification to a number of multi-class classifications and use a deep multi-task CNN model to train all associated classifiers simultaneously. For unseen image, we use the trained CNN model to predict a number of classifications at same time and fuse them to final multi-label classification. The extensive experiments demonstrate that the propose algorithm can achieve good performance on several databases. Moreover, the network architecture of the CNN model can make flexible adjustment according to the different requirements. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Integration of deep learning model and feature selection for multi-label classification
    Ebrahimi, Hossein
    Majidzadeh, Kambiz
    Gharehchopogh, Farhad Soleimanian
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2871 - 2883
  • [22] Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
    Xiao, Xiangui
    Li, Kaicheng
    IEEE ACCESS, 2021, 9 : 152250 - 152260
  • [23] SVM based multi-label learning with missing labels for image annotation
    Liu, Yang
    Wen, Kaiwen
    Gao, Quanxue
    Gao, Xinbo
    Nie, Feiping
    PATTERN RECOGNITION, 2018, 78 : 307 - 317
  • [24] Deep Learning for Multi-Label Land Cover Classification
    Karalas, Konstantinos
    Tsagkatakis, Grigorios
    Zervakis, Michalis
    Tsakalides, Panagiotis
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [25] A Deep Multi-Label Learning Framework for the Intelligent Fault Diagnosis of Machines
    Shen, Jianjun
    Li, Shihao
    Jia, Feng
    Zuo, Hao
    Ma, Junxing
    IEEE ACCESS, 2020, 8 : 113557 - 113566
  • [26] Learning discriminative representations for multi-label image recognition
    Hassanin, Mohammed
    Radwan, Ibrahim
    Khan, Salman
    Tahtali, Murat
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 83
  • [27] Towards Interpretable Deep Extreme Multi-label Learning
    Kang, Yihuang
    Cheng, I-Ling
    Mao, Wenjui
    Kuo, Bowen
    Lee, Pei-Ju
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 69 - 74
  • [28] Implicit and Explicit Concept Relations in Deep Neural Networks for Multi-Label Video/Image Annotation
    Markatopoulou, Foteini
    Mezaris, Vasileios
    Patras, Ioannis
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (06) : 1631 - 1644
  • [29] Deep Learning with a Rethinking Structure for Multi-label Classification
    Yang, Yao-Yuan
    Lin, Yi-An
    Chu, Hong-Min
    Lin, Hsuan-Tien
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 125 - 140
  • [30] Multi-Directional Multi-Label Learning
    Wu, Danyang
    Pei, Shenfei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    SIGNAL PROCESSING, 2021, 187