Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range

被引:38
作者
Davidson-Hall, Tyler [1 ,2 ]
Aziz, Hany [1 ,2 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HIGH-EFFICIENCY; AUGER RECOMBINATION; CHARGE-INJECTION; HOLE INJECTION; EPITAXIAL-GROWTH; SHELL THICKNESS; QD-LEDS; DIODES; PERFORMANCE; CDSE;
D O I
10.1063/1.5134090
中图分类号
O59 [应用物理学];
学科分类号
摘要
With significant improvements in external quantum efficiency (EQE) and stability for red, green, and blue devices over the past decade, the future of electroluminescent quantum dot light-emitting devices (QDLEDs) is bright. State-of-the-art QDLEDs have achieved >30% EQE and a >2 000 000 h electroluminescence half-life for an initial luminance of 100 cd m(-2), rivaling those of organic light-emitting devices. To date, most of the improvements in QDLED performance have been primarily achieved via advancements in QD synthesis and design that aim at reducing Auger recombination and improving the balance between electron and hole concentrations in the emissive QD layer. However, recent work is starting to reveal the critical role that other device layers, as well as interlayer interfaces, play in limiting QDLED stability. Degradation within the organic hole transport layer (HTL) and near the QD/HTL interface has recently been found to lead to the formation of nonradiative recombination centers that quench excitons in the emissive QD layer and contribute to QDLED failure over time. Looking forward, minimizing degradation in the charge transport layers will likely be crucial for the realization of highly stable QDLEDs and this perspective provides potential avenues to achieve these enhancements. In particular, tailoring the QD energy levels via material selection or interfacial dipoles may reduce charge carrier accumulation in the transport layers and replacing the organic HTL with an inorganic alternative may be an effective approach to circumvent the inherent susceptibility of organic semiconductors to exciton-induced degradation.
引用
收藏
页数:6
相关论文
共 155 条
[1]   High efficiency quantum dot light emitting diodes from positive aging [J].
Acharya, Krishna P. ;
Titov, Alexandre ;
Hyvonen, Jake ;
Wang, Chenggong ;
Tokarz, Jean ;
Holloway, Paul H. .
NANOSCALE, 2017, 9 (38) :14451-14457
[2]   Single-step synthesis of quantum dots with chemical composition gradients [J].
Bae, Wan Ki ;
Char, Kookheon ;
Hur, Hyuck ;
Lee, Seonghoon .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :531-539
[3]   Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J].
Bae, Wan Ki ;
Park, Young-Shin ;
Lim, Jaehoon ;
Lee, Donggu ;
Padilha, Lazaro A. ;
McDaniel, Hunter ;
Robel, Istvan ;
Lee, Changhee ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Quantum Dots and Their Multimodal Applications: A Review [J].
Bera, Debasis ;
Qian, Lei ;
Tseng, Teng-Kuan ;
Holloway, Paul H. .
MATERIALS, 2010, 3 (04) :2260-2345
[5]  
Boles MA, 2016, NAT MATER, V15, P364, DOI [10.1038/NMAT4578, 10.1038/nmat4578]
[6]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[7]   High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer [J].
Cao, Fan ;
Wang, Haoran ;
Shen, Piaoyang ;
Li, Xiaomin ;
Zheng, Yanqiong ;
Shang, Yuequn ;
Zhang, Jianhua ;
Ning, Zhijun ;
Yang, Xuyong .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (42)
[8]   High-Efficiency, Solution-Processed White Quantum Dot Light-Emitting Diodes with Serially Stacked Red/Green/Blue Units [J].
Cao, Fan ;
Zhao, Dewei ;
Shen, Piaoyang ;
Wu, Jialong ;
Wang, Haoran ;
Wu, Qianqian ;
Wang, Feijiu ;
Yang, Xuyong .
ADVANCED OPTICAL MATERIALS, 2018, 6 (20)
[9]   Highly stable QLEDs with improved hole injection via quantum dot structure tailoring [J].
Cao, Weiran ;
Xiang, Chaoyu ;
Yang, Yixing ;
Chen, Qi ;
Chen, Liwei ;
Yan, Xiaolin ;
Qian, Lei .
NATURE COMMUNICATIONS, 2018, 9
[10]   Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].
Caruge, J. M. ;
Halpert, J. E. ;
Wood, V. ;
Bulovic, V. ;
Bawendi, M. G. .
NATURE PHOTONICS, 2008, 2 (04) :247-250