Two-patches prey impulsive diffusion periodic predator-prey model

被引:7
作者
Liu, Zijian [1 ]
Zhong, Shouming [1 ,2 ]
Yin, Chun [1 ]
Chen, Wufan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Minist Educ, Key Lab NeuroInformat, Chengdu 610054, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey system; Diffusion; Impulsive; Periodic solution; Extinction; GLOBAL STABILITY; PATCHY ENVIRONMENT; TIME-DELAY; DISPERSAL; DYNAMICS; PERMANENCE; EXTINCTION; SYSTEMS; MIGRATION; WAVES;
D O I
10.1016/j.cnsns.2010.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a periodic predator-prey system with prey impulsive diffusion in two patches. On the basis of comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the predator-prey system where predator have not other food source are established. Two examples and numerical simulations are presented to illustrate the feasibility of our results. A conclusion is given in the end. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2641 / 2655
页数:15
相关论文
共 32 条
[1]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[2]   GLOBAL STABILITY AND PERIODIC-ORBITS FOR 2-PATCH PREDATOR-PREY DIFFUSION-DELAY MODELS [J].
BERETTA, E ;
SOLIMANO, F ;
TAKEUCHI, Y .
MATHEMATICAL BIOSCIENCES, 1987, 85 (02) :153-183
[3]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[4]  
BERETTA E, 1987, B MATH BIOL, V49, P431, DOI 10.1016/S0092-8240(87)80005-8
[5]   Analysis of a Leslie-Gower-type prey-predator model with periodic impulsive perturbations [J].
Chen, Yiping ;
Liu, Zhijun ;
Haque, Mainul .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3412-3423
[6]   Permanence and extinction for dispersal population systems [J].
Cui, JA ;
Takeuchi, Y ;
Lin, ZS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) :73-93
[7]   GLOBAL STABILITY AND PREDATOR DYNAMICS IN A MODEL OF PREY DISPERSAL IN A PATCHY ENVIRONMENT [J].
FREEDMAN, HI ;
TAKEUCHI, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :993-1002
[8]   SINGLE SPECIES MIGRATION IN 2 HABITATS - PERSISTENCE AND EXTINCTION [J].
FREEDMAN, HI .
MATHEMATICAL MODELLING, 1987, 8 :778-780
[9]   MATHEMATICAL-MODELS OF POPULATION INTERACTIONS WITH DISPERSAL .2. DIFFERENTIAL SURVIVAL IN A CHANGE OF HABITAT [J].
FREEDMAN, HI ;
RAI, B ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (01) :140-154
[10]   DOES MIGRATION STABILIZE LOCAL-POPULATION DYNAMICS - ANALYSIS OF A DISCRETE METAPOPULATION MODEL [J].
GYLLENBERG, M ;
SODERBACKA, G ;
ERICSSON, S .
MATHEMATICAL BIOSCIENCES, 1993, 118 (01) :25-49