Single-layer MoS2 transistors

被引:5408
作者
Radisavljevic, B. [1 ]
Radenovic, A. [2 ]
Brivio, J. [1 ]
Giacometti, V. [1 ]
Kis, A. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Elect Engn, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Biotechnol, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
GRAPHENE NANORIBBONS; STRAINED-SILICON; MOBILITY; GAS; PERFORMANCE; NANOWIRES; TRANSPORT; PHASE;
D O I
10.1038/NNANO.2010.279
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene(1,2), both because of its rich physics(3-5) and its high mobility(6). However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors(7). Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films(8-13) or requires high voltages(14,15). Although single layers of MoS2 have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V-1 s(-1) range(17) are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS2 mobility of at least 200 cm(2) V-1 s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 x 10(8) and ultralow standby power dissipation. Because monolayer MoS2 has a direct bandgap(16,18), it can be used to construct interband tunnel FETs19, which offer lower power consumption than classical transistors. Monolayer MoS2 could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
引用
收藏
页码:147 / 150
页数:4
相关论文
共 39 条
[1]   Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides [J].
Ayari, Anthony ;
Cobas, Enrique ;
Ogundadegbe, Ololade ;
Fuhrer, Michael S. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[2]   A NEW 3-TERMINAL TUNNEL DEVICE [J].
BANERJEE, S ;
RICHARDSON, W ;
COLEMAN, J ;
CHATTERJEE, A .
IEEE ELECTRON DEVICE LETTERS, 1987, 8 (08) :347-349
[3]  
BENAMEUR M, 2010, VISIBILITY DICHALCOG
[4]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[5]   The high-k solution [J].
Bohr, Mark T. ;
Chau, Robert S. ;
Ghani, Tahir ;
Mistry, Kaizad .
IEEE SPECTRUM, 2007, 44 (10) :29-35
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Dielectric Screening Enhanced Performance in Graphene FET [J].
Chen, Fang ;
Xia, Jilin ;
Ferry, David K. ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (07) :2571-2574
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]  
Debdeep J., 2007, PHYS REV LETT, V98
[10]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195