Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps

被引:22
作者
Chague, Pierre [1 ,2 ,3 ]
Marro, Beatrice [1 ]
Fadili, Sarah [1 ]
Houot, Marion [2 ]
Morin, Alexandre [2 ,5 ]
Samper-Gonzalez, Jorge [2 ,3 ]
Beunon, Paul [1 ]
Arrive, Lionel [1 ]
Dormont, Didier [2 ,3 ,4 ]
Dubois, Bruno [2 ,5 ]
Teichmann, Marc [2 ,5 ]
Epelbaum, Stephane [2 ,3 ,5 ]
Colliot, Olivier [2 ,3 ,4 ,5 ]
机构
[1] Hop St Antoine, AP HP, Dept Radiol, Paris, France
[2] Sorbonne Univ, Inst Cerveau & Moelle Epiniere, CNRS, INSERM,ICM,U 1127,UMR 7225, F-75013 Paris, France
[3] INRIA, Aramis Project Team, Paris, France
[4] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, F-75013 Paris, France
[5] Hop La Pitie Salpetriere, AP HP, Inst Memoire & Maladie Alzheimer IM2A, Dept Neurol, F-75013 Paris, France
基金
欧盟地平线“2020”;
关键词
Alzheimer's disease; Dementia; Diagnosis; Anatomical MRI; Artificial intelligence; ALZHEIMERS-DISEASE; FRONTOTEMPORAL DEMENTIA; NEURODEGENERATIVE DISEASES; DIFFERENTIAL-DIAGNOSIS; BEHAVIORAL VARIANT; AUTOMATIC CLASSIFICATION; ATROPHY; AD; ACCURACY; PATTERNS;
D O I
10.1016/j.neurad.2020.04.004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purpose. - Many artificial intelligence tools are currently being developed to assist diag-nosis of dementia from magnetic resonance imaging (MRI). However, these tools have so far been difficult to integrate in the clinical routine workflow. In this work, we propose a new simple way to use them and assess their utility for improving diagnostic accuracy. Materials and methods. - We studied 34 patients with early-onset Alzheimer's disease (EOAD), 49 with late-onset AD (LOAD), 39 with frontotemporal dementia (FTD) and 24 with depression from the pre-existing cohort CLIN-AD. Support vector machine (SVM) automatic classifiers using 3D T1 MRI were trained to distinguish: LOAD vs. Depression, FTD vs. LOAD, EOAD vs. Depression, EOAD vs. FTD. We extracted SVM weight maps, which are tridimensional representations of discriminant atrophy patterns used by the classifier to take its decisions and we printed posters of these maps. Four radiologists (2 senior neuroradiologists and 2 unspecialized junior radiologists) performed a visual classification of the 4 diagnostic pairs using 3D T1 MRI. Classifications were performed twice: first with standard radiological reading and then using SVM weight maps as a guide. Results. - Diagnostic performance was significantly improved by the use of the weight maps for the two junior radiologists in the case of FTD vs. EOAD. Improvement was over 10 points of diagnostic accuracy. Conclusion. - This tool can improve the diagnostic accuracy of junior radiologists and could be integrated in the clinical routine workflow. (c) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:412 / 418
页数:7
相关论文
共 36 条
[11]   Research criteria for the diagnosis of Alzheimer"s disease: revising the NINCDS-ADRDA criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Dekosky, Steven T. ;
Barberger-Gateau, Pascale ;
Cummings, Jeffrey ;
Delocourte, Andre ;
Galasko, Douglas ;
Gauthier, Serge ;
Jicha, Gregory ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Solloway, Steven ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2007, 6 (08) :734-746
[12]   Patterns of progressive atrophy vary with age in Alzheimer's disease patients [J].
Fiford, Cassidy M. ;
Ridgway, Gerard R. ;
Cash, David M. ;
Modat, Marc ;
Nicholas, Jennifer ;
Manning, Emily N. ;
Malone, Ian B. ;
Biessels, Geert Jan ;
Ourselin, Sebastien ;
Carmichael, Owen T. ;
Cardoso, M. Jorge ;
Barnes, Josephine .
NEUROBIOLOGY OF AGING, 2018, 63 :22-32
[13]   The topography of grey matter involvement in early and late onset Alzheimer's disease [J].
Frisoni, Giovanni B. ;
Pievani, Michela ;
Testa, Cristina ;
Sabattoli, Francesca ;
Bresciani, Lorena ;
Bonetti, Matteo ;
Beltramello, Alberto ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Thompson, Paul M. .
BRAIN, 2007, 130 :720-730
[14]   Voxel-based morphometric brain comparison between healthy subjects and major depressive disorder patients in Japanese with the s/s genotype of 5-HTTLPR [J].
Igata, Natsuki ;
Kakeda, Shingo ;
Watanabe, Keita ;
Ide, Satoru ;
Kishi, Taro ;
Abe, Osamu ;
Igata, Ryouhei ;
Katsuki, Asuka ;
Iwata, Nakao ;
Yoshimura, Reiji ;
Korogi, Yukunori .
SCIENTIFIC REPORTS, 2017, 7
[15]   A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry [J].
Karas, GB ;
Burton, EJ ;
Rombouts, SARB ;
van Schijndel, RA ;
O'Brien, JT ;
Scheltens, P ;
McKeith, IG ;
Williams, D ;
Ballard, C ;
Barkhof, F .
NEUROIMAGE, 2003, 18 (04) :895-907
[16]   Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease [J].
Kim, Jun Pyo ;
Kim, Jeonghun ;
Park, Yu Hyun ;
Park, Seong Beom ;
Lee, Jin San ;
Yoo, Sole ;
Kim, Eun-Joo ;
Kim, Hee Jin ;
Na, Duk L. ;
Brown, Jesse A. ;
Lockhar, Samuel N. ;
Seo, Sang Won ;
Seong, Joon-Kyung .
NEUROIMAGE-CLINICAL, 2019, 23
[17]   Accuracy of dementia diagnosisa direct comparison between radiologists and a computerized method [J].
Kloeppel, Stefan ;
Stonnington, Cynthia M. ;
Barnes, Josephine ;
Chen, Frederick ;
Chu, Carlton ;
Good, Catriona D. ;
Mader, Irina ;
Mitchell, L. Anne ;
Patel, Ameet C. ;
Roberts, Catherine C. ;
Fox, Nick C. ;
Jack, Clifford R., Jr. ;
Ashburner, John ;
Frackowiak, Richard S. J. .
BRAIN, 2008, 131 :2969-2974
[18]   Automatic classification of MR scans in Alzheimers disease [J].
Kloeppel, Stefan ;
Stonnington, Cynthia M. ;
Chu, Carlton ;
Draganski, Bogdan ;
Scahill, Rachael I. ;
Rohrer, Jonathan D. ;
Fox, Nick C. ;
Jack, Clifford R., Jr. ;
Ashburner, John ;
Frackowiak, Richard S. J. .
BRAIN, 2008, 131 :681-689
[19]   Clinical features of the behavioural variant of frontotemporal dementia that are useful for predicting underlying pathological subtypes of frontotemporal lobar degeneration [J].
Kobayashi, Zen ;
Arai, Tetsuaki ;
Kawakami, Ito ;
Yokota, Osamu ;
Hosokawa, Masato ;
Oshima, Kenichi ;
Niizato, Kazuhiro ;
Shiraishi, Atsushi ;
Akiyama, Haruhiko ;
Mizusawa, Hidehiro .
PSYCHOGERIATRICS, 2018, 18 (04) :307-312
[20]   Differential diagnosis of neurodegenerative diseases using structural MRI data [J].
Koikkalainen, Juha ;
Rhodius-Meester, Hanneke ;
Tolonen, Antti ;
Barkhof, Frederik ;
Tijms, Betty ;
Lemstra, Afina W. ;
Tong, Tong ;
Guerrero, Ricardo ;
Schuh, Andreas ;
Ledig, Christian ;
Rueckert, Daniel ;
Soininen, Hilkka ;
Remes, Anne M. ;
Waldemarg, Gunhild ;
Hasselbalch, Steen ;
Mecocci, Patrizia ;
van der Flier, Wiesje ;
Lotjonen, Jyrki .
NEUROIMAGE-CLINICAL, 2016, 11 :435-449