Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps

被引:22
作者
Chague, Pierre [1 ,2 ,3 ]
Marro, Beatrice [1 ]
Fadili, Sarah [1 ]
Houot, Marion [2 ]
Morin, Alexandre [2 ,5 ]
Samper-Gonzalez, Jorge [2 ,3 ]
Beunon, Paul [1 ]
Arrive, Lionel [1 ]
Dormont, Didier [2 ,3 ,4 ]
Dubois, Bruno [2 ,5 ]
Teichmann, Marc [2 ,5 ]
Epelbaum, Stephane [2 ,3 ,5 ]
Colliot, Olivier [2 ,3 ,4 ,5 ]
机构
[1] Hop St Antoine, AP HP, Dept Radiol, Paris, France
[2] Sorbonne Univ, Inst Cerveau & Moelle Epiniere, CNRS, INSERM,ICM,U 1127,UMR 7225, F-75013 Paris, France
[3] INRIA, Aramis Project Team, Paris, France
[4] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, F-75013 Paris, France
[5] Hop La Pitie Salpetriere, AP HP, Inst Memoire & Maladie Alzheimer IM2A, Dept Neurol, F-75013 Paris, France
基金
欧盟地平线“2020”;
关键词
Alzheimer's disease; Dementia; Diagnosis; Anatomical MRI; Artificial intelligence; ALZHEIMERS-DISEASE; FRONTOTEMPORAL DEMENTIA; NEURODEGENERATIVE DISEASES; DIFFERENTIAL-DIAGNOSIS; BEHAVIORAL VARIANT; AUTOMATIC CLASSIFICATION; ATROPHY; AD; ACCURACY; PATTERNS;
D O I
10.1016/j.neurad.2020.04.004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and purpose. - Many artificial intelligence tools are currently being developed to assist diag-nosis of dementia from magnetic resonance imaging (MRI). However, these tools have so far been difficult to integrate in the clinical routine workflow. In this work, we propose a new simple way to use them and assess their utility for improving diagnostic accuracy. Materials and methods. - We studied 34 patients with early-onset Alzheimer's disease (EOAD), 49 with late-onset AD (LOAD), 39 with frontotemporal dementia (FTD) and 24 with depression from the pre-existing cohort CLIN-AD. Support vector machine (SVM) automatic classifiers using 3D T1 MRI were trained to distinguish: LOAD vs. Depression, FTD vs. LOAD, EOAD vs. Depression, EOAD vs. FTD. We extracted SVM weight maps, which are tridimensional representations of discriminant atrophy patterns used by the classifier to take its decisions and we printed posters of these maps. Four radiologists (2 senior neuroradiologists and 2 unspecialized junior radiologists) performed a visual classification of the 4 diagnostic pairs using 3D T1 MRI. Classifications were performed twice: first with standard radiological reading and then using SVM weight maps as a guide. Results. - Diagnostic performance was significantly improved by the use of the weight maps for the two junior radiologists in the case of FTD vs. EOAD. Improvement was over 10 points of diagnostic accuracy. Conclusion. - This tool can improve the diagnostic accuracy of junior radiologists and could be integrated in the clinical routine workflow. (c) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:412 / 418
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 2013, DIAGN STAT MAN MENT
[2]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[3]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[4]   Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging [J].
Bouts, Mark J. R. J. ;
Moller, Christiane ;
Hafkemeijer, Anne ;
van Swieten, John C. ;
Dopper, Elise ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Wink, Alle Meije ;
Pijnenburg, Yolande A. L. ;
Scheltens, Philip ;
Barkhof, Frederik ;
Schouten, Tijn M. ;
de Vos, Frank ;
Feis, Rogier A. ;
van der Grond, Jeroen ;
de Rooij, Mark ;
Rombouts, Serge A. R. B. .
JOURNAL OF ALZHEIMERS DISEASE, 2018, 62 (04) :1827-1839
[5]   Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI [J].
Bron, Esther E. ;
Smits, Marion ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Meijboom, Rozanna ;
de Groot, Marius ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
EUROPEAN RADIOLOGY, 2017, 27 (08) :3372-3382
[6]   Rates of global and regional cerebral atrophy in AD and frontotemporal dementia [J].
Chan, D ;
Fox, NC ;
Jenkins, R ;
Scahill, RI ;
Crum, WR ;
Rossor, MN .
NEUROLOGY, 2001, 57 (10) :1756-1763
[7]   Cerebellar atrophy and its contribution to cognition in frontotemporal dementias [J].
Chen, Yu ;
Kumfor, Fiona ;
Landin-Romero, Ramon ;
Irish, Muireann ;
Hodges, John R. ;
Piguet, Olivier .
ANNALS OF NEUROLOGY, 2018, 84 (01) :98-109
[8]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[9]   Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI [J].
Davatzikos, C. ;
Resnick, S. M. ;
Wu, X. ;
Parmpi, P. ;
Clark, C. M. .
NEUROIMAGE, 2008, 41 (04) :1220-1227
[10]   Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia [J].
Du, An-Tao ;
Schuff, Norbert ;
Kramer, Joel H. ;
Rosen, Howard J. ;
Gorno-Tempini, Maria Luisa ;
Rankin, Katherine ;
Miller, Bruce L. ;
Weiner, Michael W. .
BRAIN, 2007, 130 :1159-1166