OUTLIER-ROBUST NEURAL AGGREGATION NETWORK FOR VIDEO FACE IDENTIFICATION

被引:0
|
作者
Hoermann, Stefan [1 ]
Knoche, Martin [1 ]
Babaee, Maryam [1 ]
Koepueklue, Okan [1 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2019年
关键词
video face recognition; face identification; biometrics; feature aggregation;
D O I
10.1109/icip.2019.8803028
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Current approaches for video face recognition rely on image sets containing faces of exclusively one identity. However, as image sets are created by unsupervised methods, it is necessary to consider outlier-afflicted sets for real-life applications. In this paper, we propose an Outlier-Robust Neural Aggregation Network (ORNAN). First, we embed each image into a feature space using a Convolutional Neural Network (CNN). With the help of two cascaded attention blocks, we predict outliers within the image set. By integrating this knowledge into our aggregation network, we adaptively aggregate all feature vectors to form a single feature, mitigating the influence of outliers and noisy features. We show that our network is robust against outliers using outlier-afflicted IJB-B and IJB-C benchmarks while maintaining similar performance without outliers.
引用
收藏
页码:1675 / 1679
页数:5
相关论文
共 50 条
  • [1] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    Rocha-Neto, Ajalmar R.
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4257 - 4289
  • [2] An Outlier-Robust Growing Local Model Network for Recursive System Identification
    Jéssyca A. Bessa
    Guilherme A. Barreto
    Ajalmar R. Rocha-Neto
    Neural Processing Letters, 2023, 55 : 4257 - 4289
  • [3] A study on deep neural network based speech enhancement by combining outlier-robust loss
    Jung, Bongsu
    Kim, Wooil
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2025, 44 (01): : 66 - 73
  • [4] Neural Aggregation Network for Video Face Recognition
    Yang, Jiaolong
    Ren, Peiran
    Zhang, Dongqing
    Chen, Dong
    Wen, Fang
    Li, Hongdong
    Hua, Gang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5216 - 5225
  • [5] Outlier-Robust Tensor PCA
    Zhou, Pan
    Feng, Jiashi
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3938 - 3946
  • [6] Outlier-Robust Wasserstein DRO
    Nietert, Sloan
    Goldfeld, Ziv
    Shafiee, Soroosh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Outlier-Robust Optimal Transport
    Mukherjee, Debarghya
    Guha, Aritra
    Solomon, Justin
    Sun, Yuekai
    Yurochkin, Mikhail
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [8] An Outlier-Robust Kalman Filter
    Agamennoni, Gabriel
    Nieto, Juan I.
    Nebot, Eduardo M.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 1551 - 1558
  • [9] An outlier-robust kernel RLS algorithm for nonlinear system identification
    Santos, Jose Daniel A.
    Barreto, Guilherme A.
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1707 - 1726
  • [10] An outlier-robust kernel RLS algorithm for nonlinear system identification
    José Daniel A. Santos
    Guilherme A. Barreto
    Nonlinear Dynamics, 2017, 90 : 1707 - 1726