Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection

被引:428
作者
Weimer, Daniel [1 ,3 ]
Scholz-Reiter, Bernd [2 ]
Shpitalni, Moshe [3 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Bremen, Germany
[2] Univ Bremen, Bremen, Germany
[3] Technion Israel Inst Technol, Dept Mech Engn, Haifa, Israel
关键词
Quality assurance; Artificial intelligence; Deep machine learning; VISUAL INSPECTION;
D O I
10.1016/j.cirp.2016.04.072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fast and reliable industrial inspection is a main challenge in manufacturing scenarios. However, the defect detection performance is heavily dependent on manually defined features for defect representation. In this contribution, we investigate a new paradigm from machine learning, namely deep machine learning by examining design configurations of deep Convolutional Neural Networks (CNN) and the impact of different hyper-parameter settings towards the accuracy of defect detection results. In contrast to manually designed image processing solutions, deep CNN automatically generate powerful features by hierarchical learning strategies from massive amounts of training data with a minimum of human interaction or expert process knowledge. An application of the proposed method demonstrates excellent defect detection results with low false alarm rates. (C) 2016 CIRP.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 29 ANN S GERM ASS PA
[2]  
[Anonymous], 2008, ELCVIA Electron. Lett. Comput. Vis. Image Anal, DOI DOI 10.5565/REV/ELCVIA.268
[3]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[4]   Assembly system design and operations for product variety [J].
Hu, S. J. ;
Ko, J. ;
Weyand, L. ;
ElMaraghy, H. A. ;
Lien, T. K. ;
Koren, Y. ;
Bley, H. ;
Chryssolouris, G. ;
Nasr, N. ;
Shpitalni, M. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2011, 60 (02) :715-733
[5]   RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN CATS VISUAL CORTEX [J].
HUBEL, DH ;
WIESEL, TN .
JOURNAL OF PHYSIOLOGY-LONDON, 1962, 160 (01) :106-&
[6]   Wavelets and their applications for surface metrology [J].
Jiang, X. ;
Scott, P. ;
Whitehouse, D. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (01) :555-558
[7]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[8]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[9]  
Masci J., 2012, The 2012 International Joint Conference on Neural Networks (IJCNN), V6, P1, DOI DOI 10.1109/IJCNN.2012.6252468
[10]  
Nair V., 2010, PROC INT C MACH LEAR, P807, DOI DOI 10.5555/3104322.3104425