A polybenzimidazole/graphite oxide based three layer membrane for intermediate temperature polymer electrolyte membrane fuel cells

被引:14
作者
Deng, Yuming [1 ,2 ]
Wang, Gang [3 ]
Fei, Ming Ming [1 ,2 ]
Huang, Xin [1 ]
Cheng, Jigui [1 ]
Liu, Xiaoteng [4 ]
Xing, Lei [5 ]
Scott, Keith [6 ]
Xu, Chenxi [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Hefei Univ Technol, Inst Ind & Equipment Technol, Hefei 230009, Anhui, Peoples R China
[3] China Qual Certificat Ctr, Beijing 100070, Peoples R China
[4] Northumbria Univ, Fac Engn & Environm, Dept Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[5] Jiangsu Univ, Inst Green Chem & Chem Technol, Zhenjiang 212013, Peoples R China
[6] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle NE1 7RU, Tyne & Wear, England
基金
中国博士后科学基金;
关键词
PROTON-EXCHANGE MEMBRANES; GRAPHITE-OXIDE; COMPOSITE MEMBRANE; GRAPHENE OXIDE; PERFORMANCE; LIQUID; NAFION;
D O I
10.1039/c6ra11307a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three layer membrane (TLM) of polybenzimidazole/graphiteoxide/polybenzimidazole (PBI/GO/PBI) has been fabricated as an electrolyte for intermediate temperature polymer exchange membrane fuel cells (IT-PEMFCs). The membrane is prepared by encapsulating a GO layer with two single PBI membranes via a layer-by-layer procedure and subsequently imbibed with phosphoric acid (PA). The TLM exhibits a lower swelling ratio than that of the pristine PBI membrane at the same PA loading time. The mechanical strength of the TLM could reach 28.6 MPa at 150 degrees C, significantly higher than that of a PBI membrane (12.2 MPa). The TLM is loaded with a PA amount of 2.23H(3)PO(4) molecules per repeat unit (PRU), which provides a proton conductivity of 0.0138 S cm (1) at 150 degrees C. The three layer structure promotes a membrane for PEMFCs with lower PA leakage and material corrosion. The fuel cell performance based on TLM exhibits a peak power density of 210 mW cm(-2) at 150 degrees C.
引用
收藏
页码:72224 / 72229
页数:6
相关论文
共 38 条
[1]   Fuel Processing for High-Temperature High-Efficiency Fuel Cells [J].
Ahmed, Khaliq ;
Foeger, Karl .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (16) :7239-7256
[2]   Challenges for PEM fuel cell membranes [J].
Beuscher, U ;
Cleghorn, SJC ;
Johnson, WB .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (12) :1103-1112
[3]   Recent developments in proton exchange membranes for fuel cells [J].
Devanathan, Ram .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :101-119
[4]   Design and synthesis of cation-functionalized ionic liquid for application as electrolyte in proton exchange membrane fuel cells [J].
Gao, Jian ;
Wang, Gang ;
Wang, Zhongwei ;
Wang, Yuantao ;
Liu, Jianguo ;
Liu, Wenming ;
Zou, Zhigang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) :19275-19281
[5]   Improved electrochemical in-situ characterization of polymer electrolyte membrane fuel cell stacks [J].
Hartung, I. ;
Kirsch, S. ;
Zihrul, P. ;
Mueller, O. ;
von Unwerth, T. .
JOURNAL OF POWER SOURCES, 2016, 307 :280-288
[6]   Solid acid membranes for high temperature (> 140 °C) proton exchange membrane fuel cells [J].
Hogarth, WHJ ;
da Costa, JCD ;
Lu, GQ .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :223-237
[7]   Graphite oxide-incorporated CeP2O7/BPO4 solid composite electrolyte for high-temperature proton exchange membrane fuel cells [J].
Huang, Xin ;
Deng, Yuming ;
Xu, Chenxi ;
Hu, Yao ;
Yang, Liang ;
Luo, Paifeng ;
Lu, Yingwei ;
Cheng, Jigui .
FUEL, 2016, 179 :299-304
[8]   Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates [J].
Iwan, Agnieszka ;
Malinowski, Marek ;
Pasciak, Grzegorz .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 49 :954-967
[9]   Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes [J].
Javier Pinar, F. ;
Canizares, Pablo ;
Rodrigo, Manuel A. ;
Ubeda, Diego ;
Lobato, Justo .
JOURNAL OF POWER SOURCES, 2015, 274 :177-185
[10]   Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount [J].
Javier Pinar, F. ;
Canizares, Pablo ;
Rodrigo, Manuel A. ;
Ubeda, Diego ;
Lobato, Justo .
RSC ADVANCES, 2012, 2 (04) :1547-1556