Unconditional stability of parallel alternating difference schemes for semilinear parabolic systems

被引:25
作者
Yuan, GW [1 ]
Shen, LJ [1 ]
Zhou, YL [1 ]
机构
[1] Inst Appl Phys & Computat Math, Ctr Nonlinear Studies, Lab Computat Phys, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
parabolic equation; parallel difference scheme; stability;
D O I
10.1016/S0096-3003(99)00180-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general alternating schemes with intrinsic parallelism for semilinear parabolic systems are studied. First we prove the a priori estimates in the discrete H-1 space of the difference solution for these schemes. Then the existence of the difference solution for these schemes follows from the fixed point principle. Finally the unconditional stability of the general alternating schemes is proved. The alternating group explicit scheme, the alternating segment explicit-implicit scheme and the alternating segment Crank-Nicolson scheme are the special cases of the general alternating schemes. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:267 / 283
页数:17
相关论文
共 12 条
[1]  
[Anonymous], 1964, INTEGRATION EQUATION
[2]  
CHEN J, 1994, INT J COMPUT MATH, V54, P215, DOI 10.1080/00207169408804353
[3]   A NEW EXPLICIT METHOD FOR THE DIFFUSION-CONVECTION EQUATION [J].
EVANS, DJ ;
ABDULLAH, AR .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (1-3) :145-154
[4]  
EVANS DJ, 1985, APPL MATH MODEL, V19, P201
[5]  
Yuan GW, 1999, NUMER METH PART D E, V15, P625, DOI 10.1002/(SICI)1098-2426(199911)15:6<625::AID-NUM2>3.0.CO
[6]  
2-O
[7]  
Zhang B., 1995, PARALLEL ALGORITHMS, V5, P219
[8]   ON ALTERNATING SEGMENT CRANK-NICOLSON SCHEME [J].
ZHANG, BL ;
LI, WZ .
PARALLEL COMPUTING, 1994, 20 (06) :897-902
[9]  
ZHANG BL, 1995, COMPUT PHYS, V12, P115
[10]  
ZHANG BL, 1997, P 5 CHIN C PAR COMP, P1