Processing, Structure, and Properties of PAN/MWNT Composite Fibers

被引:38
作者
Jain, Rahul [1 ]
Minus, Marilyn L. [2 ]
Chae, Han Gi [1 ]
Kumar, Satish [1 ]
机构
[1] Georgia Inst Technol, Sch Polymer Text & Fiber Engn, Atlanta, GA 30332 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Snell Engn Ctr 334, Boston, MA 02115 USA
关键词
fiber spinning; high-performance; interface; MWNT; polyacrylonitrile; CARBON-NANOTUBE FIBERS; MECHANICAL-PROPERTIES; SINGLE-WALL; ELECTRICAL-CONDUCTIVITY; POLYACRYLONITRILE FIBERS; FLAME RETARDANCY; SPUN FIBERS; NANOCOMPOSITES; FILMS; FLAMMABILITY;
D O I
10.1002/mame.201000083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conventional dry-jet wet fiber spinning techniques were used to fabricate continuous PAN/MWNT composite fibers with up to 20 wt.-% nanotube loading. PAN at the MWNT interface exhibited lower solubility under thermodynamically favorable conditions than in bulk PAN, indicating good interfacial interaction. Due to the PAN/MWNT interaction at the interface, thermal shrinkage decreases with increasing MWNT loading (5 to 20 wt.-%). For high MWNT loadings, PAN/ MWNT composite fiber at 15 wt.-% MWNT loading showed an axial electrical conductivity of 1.24 S.m(-1). For all loadings, PAN/MWNT composite fibers exhibited higher tensile moduli than theoretically predicted by rule-of-mixture calculations, suggesting good reinforcement of the PAN by MWNT.
引用
收藏
页码:742 / 749
页数:8
相关论文
共 56 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Properties of carbon nanotube fibers spun from DNA-stabilized dispersions [J].
Barisci, JN ;
Tahhan, M ;
Wallace, GG ;
Badaire, S ;
Vaugien, T ;
Maugey, M ;
Poulin, P .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (02) :133-138
[3]   Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate [J].
Beyer, Gunter .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (04) :218-225
[4]   Materials science - Making strong fibers [J].
Chae, Han Gi ;
Kumar, Satish .
SCIENCE, 2008, 319 (5865) :908-909
[5]   Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers [J].
Chae, Han Gi ;
Minus, Marilyn L. ;
Rasheed, Asif ;
Kumar, Satish .
POLYMER, 2007, 48 (13) :3781-3789
[6]   Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile [J].
Chae, HG ;
Minus, ML ;
Kumar, S .
POLYMER, 2006, 47 (10) :3494-3504
[7]   A comparison of reinforcement efficiency of various types of carbon nanotubes in poly acrylonitrile fiber [J].
Chae, HG ;
Sreekumar, TV ;
Uchida, T ;
Kumar, S .
POLYMER, 2005, 46 (24) :10925-10935
[8]   Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite [J].
Chang, TE ;
Jensen, LR ;
Kisliuk, A ;
Pipes, RB ;
Pyrz, R ;
Sokolov, AP .
POLYMER, 2005, 46 (02) :439-444
[9]   Continuous carbon nanotube composite fibers: properties, potential applications, and problems [J].
Dalton, AB ;
Collins, S ;
Razal, J ;
Munoz, E ;
Ebron, VH ;
Kim, BG ;
Coleman, JN ;
Ferraris, JP ;
Baughman, RH .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (01) :1-3
[10]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703