Low-Temperature Vapor-Solid Growth of ZnO Nanowhiskers for Electron Field Emission

被引:8
作者
Hedrich, Carina [1 ]
Haugg, Stefanie [1 ]
Pacarizi, Leutrim [1 ]
Furlan, Kaline P. [1 ,2 ]
Blick, Robert H. [1 ]
Zierold, Robert [1 ]
机构
[1] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Hamburg Univ Technol TUHH, Inst Adv Ceram, Denickestr 15, D-21073 Hamburg, Germany
关键词
zinc oxide; vapor-solid growth; nanowhiskers; electron field emission; zinc acetylacetonate hydrate; ZINC-OXIDE NANOWIRES; CATALYST-FREE GROWTH; OPTICAL-PROPERTIES; NANOROD ARRAYS; THIN-FILMS; DEPOSITION; NANOSTRUCTURES; MECHANISM; CARRIER;
D O I
10.3390/coatings9110698
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One-dimensional zinc oxide nanostructures have aroused interest from scientists and engineers for electron field emission applications because of their experimentally accessible high aspect ratio in combination with their low work function. A comprehensive study of the vapor-solid growth of zinc oxide (ZnO) nanowhiskers by utilizing zinc acetylacetonate hydrate and oxygen at low temperature (580 degrees C) is reported herein. The nanowhiskers morphology was investigated by varying different growth parameters, such as temperature, substrate type and position, gas flow, precursor amount, and growth time. According to the obtained parameter dependences, the process was optimized to achieve homogenous crystalline nanowhiskers with high aspect ratios and clearly defined surface facets and tips. We show electron field emission measurements from tailor-made ZnO nanowhiskers grown on n-doped silicon, titanium thin films, and free-standing silicon nitride membranes, revealing field emission turn-on fields significantly lower compared to a perfect flat ZnO thin film. Especially the latter devices-ZnO nanowhiskers on a free-standing membrane-might pave the way into a novel nanomembrane detector unit in proteomics, which can significantly extend the mass range of current time-of-flight mass spectrometers.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Model calculation of the scanned field enhancement factor of CNTs [J].
Ahmad, Amir ;
Tripathi, V. K. .
NANOTECHNOLOGY, 2006, 17 (15) :3798-3801
[2]   Zinc oxide nanotips growth by controlling vapor deposition on substrates [J].
Babu, Eadi Sunil ;
Saravanakumar, B. ;
Ravi, G. ;
Yuvakkumar, R. ;
Ganesh, V. ;
Guduru, Ramesh K. ;
Kim, Sungjin .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (08) :6149-6156
[3]   Metallorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen [J].
Baxter, Jason B. ;
Aydil, Eray S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :H52-H58
[4]   A universal formula for the field enhancement factor [J].
Biswas, Debabrata .
PHYSICS OF PLASMAS, 2018, 25 (04)
[5]  
Carretero-Genevrier A., 2016, ENCY NANOTECHNOLOGY
[6]   Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer [J].
Cha, S. N. ;
Song, B. G. ;
Jang, J. E. ;
Jung, J. E. ;
Han, I. T. ;
Ha, J. H. ;
Hong, J. P. ;
Kang, D. J. ;
Kim, J. M. .
NANOTECHNOLOGY, 2008, 19 (23)
[7]   One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices [J].
Ding, Meng ;
Guo, Zhen ;
Zhou, Lianqun ;
Fang, Xuan ;
Zhang, Lili ;
Zeng, Leyong ;
Xie, Lina ;
Zhao, Hongbin .
CRYSTALS, 2018, 8 (05)
[8]   ZnO nanostructures for optoelectronics: Material properties and device applications [J].
Djurisic, A. B. ;
Ng, A. M. C. ;
Chen, X. Y. .
PROGRESS IN QUANTUM ELECTRONICS, 2010, 34 (04) :191-259
[9]   Optical properties of ZnO nanostructures [J].
Djurisic, Aleksandra B. ;
Leung, Yu Hang .
SMALL, 2006, 2 (8-9) :944-961
[10]   Synthesis and field emission properties of different ZnO nanostructure arrays [J].
Fang, Yaoguo ;
Wong, Kin Mun ;
Lei, Yong .
NANOSCALE RESEARCH LETTERS, 2012, 7