New Complex and Hyperbolic Forms for Ablowitz-Kaup-Newell-Segur Wave Equation with Fourth Order

被引:84
|
作者
Eskitascioglu, Esin Inan [1 ]
Aktas, Muhammed Bahadirhan [2 ]
Baskonus, Haci Mehmet [3 ]
机构
[1] Yuzuncu Yil Univ, Fac Sci, Van, Turkey
[2] Minist Natl Educ, Van, Turkey
[3] Harran Univ, Fac Educ, Sanliurfa, Turkey
关键词
The sine-Gordon expansion method; Ablowitz-Kaup-Newell-Segur wave equation; complex hyperbolic function solutions; CONTINUED-FRACTION EXPANSIONS; NONLINEAR EVOLUTION-EQUATIONS; REAL QUADRATIC FIELDS; EXTENDED TANH METHOD; DIFFERENTIAL TRANSFORM; THERMAL-CONVECTION; VISCOELASTIC FLUID; EXPLICIT; BEHAVIORS; OPERATORS;
D O I
10.2478/AMNS.2019.1.00010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Researching different solutions of nonlinear models has been interesting in different fields of science and application. In this study, we investigated different solutions of fourth-order nonlinear Ablowitz-Kaup-Newell-Segur wave equation. We have used the sine-Gordon expansion method (SGEM) during this research. We have given the 2D, 3D, and contour graphs acquired from the values of the solutions obtained using strong SGEM.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [21] SOLUTIONS OF THE ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY EQUATIONS OF THE "ROGUE WAVE" TYPE: A UNIFIED APPROACH
    Matveev, V. B.
    Smirnov, A. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (02) : 156 - 182
  • [22] Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications
    Ali, Asghar
    Seadawy, Aly R.
    Lu, Dianchen
    OPEN PHYSICS, 2018, 16 (01): : 219 - 226
  • [23] Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach
    Devi, Munesh
    Yadav, Shalini
    Arora, Rajan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
  • [24] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
    Liu Ping
    Zeng Bao-Qing
    Yang Jian-Rong
    Ren Bo
    CHINESE PHYSICS B, 2015, 24 (01)
  • [25] ANALYTICAL TREATMENT ON A NEW GENERALIZED ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY OF THERMAL AND FLUID EQUATIONS
    Zhang, Sheng
    Gao, Xudong
    THERMAL SCIENCE, 2017, 21 (04): : 1607 - 1612
  • [26] FRACTAL TRAVELING WAVE SOLUTIONS FOR THE FRACTAL-FRACTIONAL ABLOWITZ-KAUP-NEWELL-SEGUR MODEL
    Wang, Kangle
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (09)
  • [27] Symmetry group and exact solutions for the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation
    Ren, Bo
    Xu, Xue-jun
    Lin, Ji
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [28] The fractional supertrace identity and its application to the super Ablowitz-Kaup-Newell-Segur hierarchy
    Wang, Hui
    Xia, Tie-Cheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
  • [29] Multi-component integrable couplings for the Ablowitz-Kaup-Newell-Segur and Volterra hierarchies
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Yu, Shuimeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4345 - 4356
  • [30] Solitons in a generalized (2+1)-dimensional Ablowitz-Kaup-Newell-Segur system
    Zheng, CL
    Zhang, JF
    Wu, FM
    Sheng, ZM
    Chen, LQ
    CHINESE PHYSICS, 2003, 12 (05): : 472 - 478