Online Robust Principal Component Analysis With Change Point Detection

被引:21
作者
Xiao, Wei [1 ,2 ]
Huang, Xiaolin [3 ,4 ]
He, Fan [3 ,4 ]
Silva, Jorge [5 ]
Emrani, Saba [5 ,6 ]
Chaudhuri, Arin [5 ]
机构
[1] SAS Inst, Cary, NC 27513 USA
[2] Amazon Inc, Seattle, WA 98109 USA
[3] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Inst Med Robot, Shanghai 200240, Peoples R China
[4] MOE Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[5] SAS Inst Inc, Cary, NC 27513 USA
[6] Apple Inc, Cupertino, CA 95014 USA
基金
中国国家自然科学基金;
关键词
Principal component analysis; Sparse matrices; Matrix decomposition; Microsoft Windows; Surveillance; Big Data; Synthetic aperture sonar; Change point detection; online; principal component analysis; PCA; SPARSE;
D O I
10.1109/TMM.2019.2923097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust principal component analysis (PCA) is a key technique for dynamical high-dimensional data analysis, including background subtraction for surveillance video. Typically, robust PCA requires all observations to be stored in memory before processing. The batch manner makes robust PCA inefficient for big data. In this paper, we develop an efficient online robust PCA method, namely, online moving window robust principal component analysis (OMWRPCA). Unlike the existing algorithms, OMWRPCA can successfully track not only slowly changing subspaces but also abruptly changing subspaces. Embedding hypothesis testing into the algorithm enables OMWRPCA to detect change points of the underlying subspaces. Extensive numerical experiments, including real-time background subtraction, demonstrate the superior performance of OMWRPCA compared with other state-of-the-art approaches.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 38 条
[1]  
[Anonymous], 2011, P 22 INT JOINT C ART
[2]  
[Anonymous], 2010, 100920105055 ARXIV
[3]  
[Anonymous], P INT C MACH LEARN
[4]  
[Anonymous], 2011, ARXIV11093827
[5]  
Aravkin A, 2014, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P32
[6]  
Balzano L., 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P704, DOI 10.1109/ALLERTON.2010.5706976
[7]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[8]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[9]   Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance [J].
Bouwmans, Thierry ;
Zahzah, El Hadi .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 :22-34
[10]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)