Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus

被引:116
作者
Jiang, Yu-Ping [1 ]
Cheng, Fei [1 ]
Zhou, Yan-Hong [1 ]
Xia, Xiao-Jian [1 ]
Mao, Wei-Hua [1 ]
Shi, Kai [1 ]
Chen, Zhixiang [1 ,3 ]
Yu, Jing-Quan [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Hort, Hangzhou 310058, Zhejiang, Peoples R China
[2] Minist Agr China, Key Lab Hort Plants Growth Dev & Qual Improvement, Hangzhou 310058, Zhejiang, Peoples R China
[3] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金;
关键词
Benson-Calvin cycle; glutathione; hydrogen peroxide (H2O2); photosynthesis; reactive oxygen species (ROS); HYDROGEN-PEROXIDE; STRESS TOLERANCE; H2O2; ACCUMULATION; RUBISCO ACTIVASE; OXIDATIVE STRESS; LARGE SUBUNIT; OXYGEN; GROWTH; PHOTOSYNTHESIS; ACID;
D O I
10.1111/j.1469-8137.2012.04111.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brassinosteroids (BRs) play a vital role in plant growth, stress tolerance and productivity. Here, the involvement of BRs in the regulation of CO2 assimilation and cellular redox homeostasis was studied. The effects of BRs on CO2 assimilation were studied in cucumber (Cucumis sativus) through the analysis of the accumulation of H2O2 and glutathione and photosynthesis-related enzyme activities using histochemical and cytochemical detection or a spectrophotometric assay, and Rubisco activase (RCA) using western blot analysis and immunogold labeling. Exogenous BR increased apoplastic H2O2 accumulation, the ratio of reduced to oxidized glutathione (GSH:GSSG) and CO2 assimilation, whereas a BR biosynthetic inhibitor had the opposite effects. BR-induced CO2 assimilation was decreased by a H2O2 scavenger or inhibition of H2O2 generation, GSH biosynthesis and the NADPH-generating pentose phosphate pathway. BR-, H2O2- or GSH-induced CO2 assimilation was associated with increased activity of enzymes in the BensonCalvin cycle. Immunogold labeling and western blotting showed that BR increased the content of RCA and this effect was blocked by inhibitors of redox homeostasis. These results strongly suggest that BR-induced photosynthesis involves an H2O2-mediated increase in the GSH:GSSG ratio, which may positively regulate the synthesis and activation of redox-sensitive enzymes in carbon fixation.
引用
收藏
页码:932 / 943
页数:12
相关论文
共 64 条
[1]   Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor [J].
Asami, T ;
Min, YK ;
Nagata, N ;
Yamagishi, K ;
Takatsuto, S ;
Fujioka, S ;
Murofushi, N ;
Yamaguchi, I ;
Yoshida, S .
PLANT PHYSIOLOGY, 2000, 123 (01) :93-99
[2]   The influence of the light environment and photosynthesis on oxidative signalling responses in plant-biotrophic pathogen interactions [J].
Bechtold, U ;
Karpinski, S ;
Mullineaux, PM .
PLANT CELL AND ENVIRONMENT, 2005, 28 (08) :1046-1055
[3]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[4]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[5]   A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells [J].
Carol, RJ ;
Takeda, S ;
Linstead, P ;
Durrant, MC ;
Kakesova, H ;
Derbyshire, P ;
Drea, S ;
Zarsky, V ;
Dolan, L .
NATURE, 2005, 438 (7070) :1013-1016
[6]   Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis [J].
Choe, S ;
Fujioka, S ;
Noguchi, T ;
Takatsuto, S ;
Yoshida, S ;
Feldmann, KA .
PLANT JOURNAL, 2001, 26 (06) :573-582
[7]   Brassinosteroids: Essential regulators of plant growth and development [J].
Clouse, SD ;
Sasse, JM .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :427-451
[8]   Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber [J].
Cui, Jin-Xia ;
Zhou, Yan-Hong ;
Ding, Jian-Gang ;
Xia, Xiao-Jian ;
Shi, Kai ;
Chen, Shuang-Chen ;
Asami, Tadao ;
Chen, Zhixiang ;
Yu, Jing-Quan .
PLANT CELL AND ENVIRONMENT, 2011, 34 (02) :347-358
[9]   Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings [J].
Dat, JF ;
Lopez-Delgado, H ;
Foyer, CH ;
Scott, IM .
PLANT PHYSIOLOGY, 1998, 116 (04) :1351-1357
[10]   Redox signal integration: from stimulus to networks and genes [J].
Dietz, Karl-Josef .
PHYSIOLOGIA PLANTARUM, 2008, 133 (03) :459-468