Traveling wave-standing wave transition in the coupled complex Ginzburg-Landau equations

被引:9
作者
Sakaguchi, H [1 ]
机构
[1] KYUSHU UNIV,DEPT APPL PHYS,FUKUOKA 810,JAPAN
来源
PHYSICA SCRIPTA | 1996年 / T67卷
关键词
D O I
10.1088/0031-8949/1996/T67/030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The coupled Ginzburg-Landau equations are studied numerically. The instability of a chaotic traveling wave state is characterized by means of a stability exponent. When the traveling wave state is unstable, several types of coexistent states of left and right traveling waves appear. Stationary and propagating soliton lattice states are numerically found as a stable coexistent state.
引用
收藏
页码:148 / 150
页数:3
相关论文
共 8 条
[1]   EVOLUTION OF THE ORDER PARAMETER IN SITUATIONS WITH BROKEN ROTATIONAL SYMMETRY [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICS LETTERS A, 1986, 118 (02) :67-73
[2]  
COULLET P, 1985, J PHYS LETT-PARIS, V46, pL787, DOI 10.1051/jphyslet:019850046017078700
[3]   STRUCTURE OF NONLINEAR TRAVELING-WAVE STATES IN FINITE GEOMETRIES [J].
CROSS, MC .
PHYSICAL REVIEW A, 1988, 38 (07) :3593-3600
[4]   TRAVELING-WAVE CONVECTION IN AN ANNULUS [J].
KOLODNER, P ;
BENSIMON, D ;
SURKO, CM .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1723-1726
[5]   NONLINEAR SCHRODINGER EQUATION INCLUDING GROWTH AND DAMPING [J].
PEREIRA, NR ;
STENFLO, L .
PHYSICS OF FLUIDS, 1977, 20 (10) :1733-1734
[6]   TRAVELING WAVES AND DEFECT-INITIATED TURBULENCE IN ELECTROCONVECTING NEMATICS [J].
REHBERG, I ;
RASENAT, S ;
STEINBERG, V .
PHYSICAL REVIEW LETTERS, 1989, 62 (07) :756-759
[7]   PHASE DYNAMICS OF THE COUPLED COMPLEX GINZBURG-LANDAU EQUATIONS [J].
SAKAGUCHI, H .
PROGRESS OF THEORETICAL PHYSICS, 1995, 93 (03) :491-502
[8]   SMALL-AMPLITUDE PERIODIC AND CHAOTIC SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION FOR A SUBCRITICAL BIFURCATION [J].
SCHOPF, W ;
KRAMER, L .
PHYSICAL REVIEW LETTERS, 1991, 66 (18) :2316-2319