Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

被引:30
作者
Geyer, Nadine [1 ]
Wollschlaeger, Nicole [1 ]
Fuhrmann, Bodo [2 ]
Tonkikh, Alexander [1 ]
Berger, Andreas [1 ]
Werner, Peter [1 ]
Jungmann, Marco [3 ]
Krause-Rehberg, Reinhard [3 ]
Leipner, Hartmut S. [2 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] Univ Halle Wittenberg, Interdisciplinary Ctr Mat Sci, D-01620 Halle, Germany
[3] Univ Halle Wittenberg, Inst Phys, D-01620 Halle, Germany
关键词
metal-assisted chemical etching; silicon nanowires; etching model; porous silicon; POROUS SILICON; TRANSPORT; ARRAYS;
D O I
10.1088/0957-4484/26/24/245301
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Semiconductor nanowires: optics and optoelectronics [J].
Agarwal, R. ;
Lieber, C. M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03) :209-215
[2]  
Ahn C C, 1993, EELS ATLAS REFERENCE
[3]   AN EXPERIMENTAL AND THEORETICAL-STUDY OF THE FORMATION AND MICROSTRUCTURE OF POROUS SILICON [J].
BEALE, MIJ ;
BENJAMIN, JD ;
UREN, MJ ;
CHEW, NG ;
CULLIS, AG .
JOURNAL OF CRYSTAL GROWTH, 1985, 73 (03) :622-636
[4]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[5]   Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces [J].
Burmeister, F ;
Badowsky, W ;
Braun, T ;
Wieprich, S ;
Boneberg, J ;
Leiderer, P .
APPLIED SURFACE SCIENCE, 1999, 144-45 :461-466
[6]   Formation and application of porous silicon [J].
Föll, H ;
Christophersen, M ;
Carstensen, J ;
Hasse, G .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 39 (04) :93-141
[7]   Ag-Mediated Charge Transport during Metal-Assisted Chemical Etching of Silicon Nanowires [J].
Geyer, Nadine ;
Fuhrmann, Bodo ;
Leipner, Hartmut S. ;
Werner, Peter .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (10) :4302-4308
[8]   Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts [J].
Geyer, Nadine ;
Fuhrmann, Bodo ;
Huang, Zhipeng ;
de Boor, Johannes ;
Leipner, Hartmut S. ;
Werner, Peter .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (24) :13446-13451
[9]   Sub-20 nm Si/Ge Superlattice Nanowires by Metal-Assisted Etching [J].
Geyer, Nadine ;
Huang, Zhipeng ;
Fuhrmann, Bodo ;
Grimm, Silko ;
Reiche, Manfred ;
Nguyen-Duc, Trung-Kien ;
de Boor, Johannes ;
Leipner, Hartmut S. ;
Werner, Peter ;
Goesele, Ulrich .
NANO LETTERS, 2009, 9 (09) :3106-3110
[10]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977