Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles

被引:1
|
作者
Kenig, Carlos [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源
JAPANESE JOURNAL OF MATHEMATICS | 2011年 / 6卷 / 02期
关键词
critical non-linear dispersive equation; global existence; scattering; finite time blow-up; universal profiles; SCHRODINGER-EQUATION; WAVE MAPS; WELL-POSEDNESS; CAUCHY-PROBLEM; ASYMPTOTIC-BEHAVIOR; RADIAL DATA; ENERGY; REGULARITY; SPACE; TIME;
D O I
10.1007/s11537-011-1108-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss recent progress in the understanding of the global behavior of solutions to critical non-linear dispersive equations. The emphasis is on global existence, scattering and finite time blow-up. For solutions that are bounded in the critical norm, but which blow-up in finite time, we also discuss the issue of universal profiles at the blow-up time.
引用
收藏
页码:121 / 141
页数:21
相关论文
共 50 条
  • [1] Critical non-linear dispersive equations: global existence, scattering, blow-up and universal profiles
    Carlos Kenig
    Japanese Journal of Mathematics, 2011, 6 : 121 - 141
  • [2] Asymptotics and Blow-up for Mass Critical Nonlinear Dispersive Equations
    Merle, Frank
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 579 - 590
  • [3] Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrodinger equations with periodic potentials
    Dinh, Van Duong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 3252 - 3292
  • [4] Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations
    Babaoglu, C.
    Erbay, H. A.
    Erkip, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 82 - 93
  • [5] Dispersive blow-up for nonlinear Schrodinger equations revisited
    Bona, J. L.
    Ponce, G.
    Saut, J-C
    Sparber, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 782 - 811
  • [6] Global Existence and Blow-up Solutions for a Parabolic Equation with Critical Nonlocal Interactions
    Zhang, Jian
    Radulescu, Vicentiu D.
    Yang, Minbo
    Zhou, Jiazheng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025, 37 (01) : 687 - 725
  • [7] A GLOBAL EXISTENCE AND BLOW-UP THRESHOLD FOR DAVEY-STEWARTSON EQUATIONS IN R3
    Li, Shiming
    Li, Yongsheng
    Yan, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1899 - 1912
  • [8] Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 313 - 322
  • [9] Global existence and blow-up of solutions to a class of nonlocal parabolic equations
    Xu, Guangyu
    Zhou, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 979 - 996
  • [10] Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space
    Banica, Valeria
    Duyckaerts, Thomas
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 12 (01) : 53 - 96