Boundedness and unboundedness results for some maximal operators on functions of bounded variation

被引:11
作者
Aldaz, J. M. [1 ]
Lazaro, J. Perez [1 ,2 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Logrona 26004, La Rioja, Spain
[2] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Navarra, Spain
关键词
maximal function; Sobolev spaces; bounded variation functions;
D O I
10.1016/j.jmaa.2007.03.097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the space BV(I) of functions of bounded variation on an arbitrary interval I subset of R, in terms of a uniform boundedness condition satisfied by the local uncentered maximal operator M-R from BV(I) into the Sobolev space W-1,W-1(I). By restriction, the corresponding characterization holds for W-1,W-1(I). We also show that if U is open in R-d, d > 1, then boundedness from BV(U) into W-1,W-1(U) fails for the local directional maximal operator M-T(v) the local strong maximal operator M-T(S), and the iterated local directional maximal operator M-T(d) o...o M-T(1). Nevertheless, if U satisfies a cone condition, then M-T(S):BV(U) -> L-1(U) boundedly, and the same happens with M-T(v), M-T(d) o...o M-T(1), and M-R. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 19 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]  
[Anonymous], 2003, PURE APPL MAT AMST
[4]  
[Anonymous], [No title captured]
[5]  
Bennett C., 1988, PURE APPL MATH, V129
[6]  
Buckley SM, 1999, ANN ACAD SCI FENN-M, V24, P519
[7]   WEAK TYPE INEQUALITIES FOR PRODUCT OPERATORS [J].
FAVA, NA .
STUDIA MATHEMATICA, 1972, 42 (03) :271-&
[8]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[9]   A new characterization of the Sobolev space [J].
Hajlasz, P .
STUDIA MATHEMATICA, 2003, 159 (02) :263-275
[10]  
Jessen B., 1935, FUNDA MATH, V25, P217, DOI [10.4064/fm-25-1-217-234, DOI 10.4064/FM-25-1-217-234]