A continuous valence band through N-O orbital hybridization in N-TiO2 and its induced full visible-light absorption for photocatalytic hydrogen production

被引:8
作者
Sun, Shuchao [1 ,2 ]
Chi, Qianqian [1 ]
Zhou, Han [1 ]
Ye, Wei [1 ]
Zhu, Genping [1 ]
Gao, Peng [1 ]
机构
[1] Hangzhou Normal Univ, Coll Mat Chem & Chem Engn, Hangzhou 311121, Zhejiang, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
Continuous valence band; Orbital hybridization; photocatalytic; Hydrogen production; DOPED TIO2; TITANIUM-DIOXIDE; ELECTRONIC-STRUCTURE; HIGHLY EFFICIENT; WATER; DEPENDENCE; REDUCTION; OXIDATION; CATALYST; FILMS;
D O I
10.1016/j.ijhydene.2018.12.097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen production represents an effective approach for solar energy conversion, which can greatly ease the current energy crisis. Herein, we report a successful N-O orbital hybridization in N-doped TiO2 nanotube, the absorption wavelength is greatly red-shifted to visible light (from 400 to 800 nm) with large absorbance. The doping N element can partially replace the oxygen sites in TiO2 lattice to form N-Ti-N bonds. The hybridization effect of N 2p and O 2p makes a continuous valence band and the position up-shift from 1.99 to 1.67 eV, the band gap is subsequently narrowed from 3.21 to 2.77 eV for 1.85-N-TiO2 nanotube, which has been confirmed by ultraviolet-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy valence band spectra. Benefiting from the enhanced visible light absorption ability and ultrathin shell feature, 1.85-N-TiO2 nanotube exhibits exciting photocatalytic hydrogen evolution performance with a rate of 10870 mu mol h(-1) g(-1) under the selected visible light irradiation (lambda > 400 nm). This work demonstrates an alternative strategy for tuning visible light absorption ability by doping for wide-band-gap semiconductors in photocatalysts design, and the philosophy can also be extended to other photocatalytic systems. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3553 / 3559
页数:7
相关论文
共 47 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts [J].
Bai, Song ;
Yang, Li ;
Wang, Chunlei ;
Lin, Yue ;
Lu, Junling ;
Jiang, Jun ;
Xiong, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14810-14814
[3]   Photocatalytic hydrogen production over titania modified by gold - Metal (palladium, nickel and cobalt) catalysts [J].
Barrios, C. E. ;
Albiter, E. ;
Gracia y Jimenez, J. M. ;
Tiznado, H. ;
Romo-Herrera, J. ;
Zanella, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) :23287-23300
[4]   Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase -: art. no. 026103 [J].
Batzill, M ;
Morales, EH ;
Diebold, U .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[5]   Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies [J].
Beranek, Radim ;
Neumann, Bernhard ;
Sakthivel, Shanmugasundaram ;
Janczarek, Marcin ;
Dittrich, Thomas ;
Tributsch, Helmut ;
Kisch, Horst .
CHEMICAL PHYSICS, 2007, 339 (1-3) :11-19
[6]   Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell [J].
Bhowmick, G. D. ;
Noori, Md. T. ;
Das, Indrasis ;
Neethu, B. ;
Ghangrekar, M. M. ;
Mitra, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (15) :7501-7510
[7]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[8]   Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance [J].
Cao, Yan ;
Xing, Zipeng ;
Shen, Yingcai ;
Li, Zhenzi ;
Wu, Xiaoyan ;
Yan, Xu ;
Zou, Jinlong ;
Yang, Shilin ;
Zhou, Wei .
CHEMICAL ENGINEERING JOURNAL, 2017, 325 :199-207
[9]   Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J].
Chen, XB ;
Burda, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15446-15449
[10]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959